Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnxrlem Structured version   Visualization version   Unicode version

Theorem ioorrnopnxrlem 40526
Description: Given a point  F that belongs to an indexed product of (possibly unbounded) open intervals, then  F belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnxrlem.x  |-  ( ph  ->  X  e.  Fin )
ioorrnopnxrlem.a  |-  ( ph  ->  A : X --> RR* )
ioorrnopnxrlem.b  |-  ( ph  ->  B : X --> RR* )
ioorrnopnxrlem.f  |-  ( ph  ->  F  e.  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i
) ) )
ioorrnopnxrlem.l  |-  L  =  ( i  e.  X  |->  if ( ( A `
 i )  = -oo ,  ( ( F `  i )  -  1 ) ,  ( A `  i
) ) )
ioorrnopnxrlem.r  |-  R  =  ( i  e.  X  |->  if ( ( B `
 i )  = +oo ,  ( ( F `  i )  +  1 ) ,  ( B `  i
) ) )
ioorrnopnxrlem.v  |-  V  = 
X_ i  e.  X  ( ( L `  i ) (,) ( R `  i )
)
Assertion
Ref Expression
ioorrnopnxrlem  |-  ( ph  ->  E. v  e.  (
TopOpen `  (ℝ^ `  X
) ) ( F  e.  v  /\  v  C_  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i )
) ) )
Distinct variable groups:    v, A    v, B    i, F, v   
i, L    R, i    v, V    i, X, v    ph, i
Allowed substitution hints:    ph( v)    A( i)    B( i)    R( v)    L( v)    V( i)

Proof of Theorem ioorrnopnxrlem
StepHypRef Expression
1 ioorrnopnxrlem.v . . . 4  |-  V  = 
X_ i  e.  X  ( ( L `  i ) (,) ( R `  i )
)
21a1i 11 . . 3  |-  ( ph  ->  V  =  X_ i  e.  X  ( ( L `  i ) (,) ( R `  i
) ) )
3 ioorrnopnxrlem.x . . . 4  |-  ( ph  ->  X  e.  Fin )
4 iftrue 4092 . . . . . . . 8  |-  ( ( A `  i )  = -oo  ->  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) )  =  ( ( F `  i )  -  1 ) )
54adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) )  =  ( ( F `  i )  -  1 ) )
6 ioorrnopnxrlem.f . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i
) ) )
76adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  X )  ->  F  e.  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i )
) )
8 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  X )  ->  i  e.  X )
9 fvixp2 39389 . . . . . . . . . . 11  |-  ( ( F  e.  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i
) )  /\  i  e.  X )  ->  ( F `  i )  e.  ( ( A `  i ) (,) ( B `  i )
) )
107, 8, 9syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  i )  e.  ( ( A `  i ) (,) ( B `  i )
) )
1110elioored 39776 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  i )  e.  RR )
12 1red 10055 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  X )  ->  1  e.  RR )
1311, 12resubcld 10458 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  (
( F `  i
)  -  1 )  e.  RR )
1413adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  (
( F `  i
)  -  1 )  e.  RR )
155, 14eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) )  e.  RR )
16 iffalse 4095 . . . . . . . 8  |-  ( -.  ( A `  i
)  = -oo  ->  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) )  =  ( A `
 i ) )
1716adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  ->  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) )  =  ( A `
 i ) )
18 neqne 2802 . . . . . . . . 9  |-  ( -.  ( A `  i
)  = -oo  ->  ( A `  i )  =/= -oo )
1918adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  -> 
( A `  i
)  =/= -oo )
20 ioorrnopnxrlem.a . . . . . . . . . . 11  |-  ( ph  ->  A : X --> RR* )
2120ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  X )  ->  ( A `  i )  e.  RR* )
2221adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  =/= -oo )  ->  ( A `  i )  e.  RR* )
23 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  =/= -oo )  ->  ( A `  i )  =/= -oo )
24 pnfxr 10092 . . . . . . . . . . . 12  |- +oo  e.  RR*
2524a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  X )  -> +oo  e.  RR* )
2611rexrd 10089 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  i )  e.  RR* )
27 ioorrnopnxrlem.b . . . . . . . . . . . . . 14  |-  ( ph  ->  B : X --> RR* )
2827ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  X )  ->  ( B `  i )  e.  RR* )
29 ioogtlb 39717 . . . . . . . . . . . . 13  |-  ( ( ( A `  i
)  e.  RR*  /\  ( B `  i )  e.  RR*  /\  ( F `
 i )  e.  ( ( A `  i ) (,) ( B `  i )
) )  ->  ( A `  i )  <  ( F `  i
) )
3021, 28, 10, 29syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  X )  ->  ( A `  i )  <  ( F `  i
) )
3111ltpnfd 11955 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  i )  < +oo )
3221, 26, 25, 30, 31xrlttrd 11990 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  X )  ->  ( A `  i )  < +oo )
3321, 25, 32xrltned 39573 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  X )  ->  ( A `  i )  =/= +oo )
3433adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  =/= -oo )  ->  ( A `  i )  =/= +oo )
3522, 23, 34xrred 39581 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  =/= -oo )  ->  ( A `  i )  e.  RR )
3619, 35syldan 487 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  -> 
( A `  i
)  e.  RR )
3717, 36eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  ->  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) )  e.  RR )
3815, 37pm2.61dan 832 . . . . 5  |-  ( (
ph  /\  i  e.  X )  ->  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) )  e.  RR )
39 ioorrnopnxrlem.l . . . . 5  |-  L  =  ( i  e.  X  |->  if ( ( A `
 i )  = -oo ,  ( ( F `  i )  -  1 ) ,  ( A `  i
) ) )
4038, 39fmptd 6385 . . . 4  |-  ( ph  ->  L : X --> RR )
41 iftrue 4092 . . . . . . . 8  |-  ( ( B `  i )  = +oo  ->  if ( ( B `  i )  = +oo ,  ( ( F `
 i )  +  1 ) ,  ( B `  i ) )  =  ( ( F `  i )  +  1 ) )
4241adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  if ( ( B `  i )  = +oo ,  ( ( F `
 i )  +  1 ) ,  ( B `  i ) )  =  ( ( F `  i )  +  1 ) )
4311, 12readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  (
( F `  i
)  +  1 )  e.  RR )
4443adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  (
( F `  i
)  +  1 )  e.  RR )
4542, 44eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  if ( ( B `  i )  = +oo ,  ( ( F `
 i )  +  1 ) ,  ( B `  i ) )  e.  RR )
46 iffalse 4095 . . . . . . . 8  |-  ( -.  ( B `  i
)  = +oo  ->  if ( ( B `  i )  = +oo ,  ( ( F `
 i )  +  1 ) ,  ( B `  i ) )  =  ( B `
 i ) )
4746adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  ->  if ( ( B `  i )  = +oo ,  ( ( F `
 i )  +  1 ) ,  ( B `  i ) )  =  ( B `
 i ) )
48 neqne 2802 . . . . . . . . 9  |-  ( -.  ( B `  i
)  = +oo  ->  ( B `  i )  =/= +oo )
4948adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( B `  i
)  =/= +oo )
5028adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  =/= +oo )  ->  ( B `  i )  e.  RR* )
51 mnfxr 10096 . . . . . . . . . . . 12  |- -oo  e.  RR*
5251a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  X )  -> -oo  e.  RR* )
5311mnfltd 11958 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  X )  -> -oo  <  ( F `  i ) )
54 iooltub 39735 . . . . . . . . . . . . 13  |-  ( ( ( A `  i
)  e.  RR*  /\  ( B `  i )  e.  RR*  /\  ( F `
 i )  e.  ( ( A `  i ) (,) ( B `  i )
) )  ->  ( F `  i )  <  ( B `  i
) )
5521, 28, 10, 54syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  i )  <  ( B `  i
) )
5652, 26, 28, 53, 55xrlttrd 11990 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  X )  -> -oo  <  ( B `  i ) )
5752, 28, 56xrgtned 39538 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  X )  ->  ( B `  i )  =/= -oo )
5857adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  =/= +oo )  ->  ( B `  i )  =/= -oo )
59 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  =/= +oo )  ->  ( B `  i )  =/= +oo )
6050, 58, 59xrred 39581 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  =/= +oo )  ->  ( B `  i )  e.  RR )
6149, 60syldan 487 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( B `  i
)  e.  RR )
6247, 61eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  ->  if ( ( B `  i )  = +oo ,  ( ( F `
 i )  +  1 ) ,  ( B `  i ) )  e.  RR )
6345, 62pm2.61dan 832 . . . . 5  |-  ( (
ph  /\  i  e.  X )  ->  if ( ( B `  i )  = +oo ,  ( ( F `
 i )  +  1 ) ,  ( B `  i ) )  e.  RR )
64 ioorrnopnxrlem.r . . . . 5  |-  R  =  ( i  e.  X  |->  if ( ( B `
 i )  = +oo ,  ( ( F `  i )  +  1 ) ,  ( B `  i
) ) )
6563, 64fmptd 6385 . . . 4  |-  ( ph  ->  R : X --> RR )
663, 40, 65ioorrnopn 40525 . . 3  |-  ( ph  -> 
X_ i  e.  X  ( ( L `  i ) (,) ( R `  i )
)  e.  ( TopOpen `  (ℝ^ `  X ) ) )
672, 66eqeltrd 2701 . 2  |-  ( ph  ->  V  e.  ( TopOpen `  (ℝ^ `  X ) ) )
686elexd 3214 . . . . . 6  |-  ( ph  ->  F  e.  _V )
69 ixpfn 7914 . . . . . . 7  |-  ( F  e.  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i )
)  ->  F  Fn  X )
706, 69syl 17 . . . . . 6  |-  ( ph  ->  F  Fn  X )
7140ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  X )  ->  ( L `  i )  e.  RR )
7271rexrd 10089 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  ( L `  i )  e.  RR* )
7365ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  X )  ->  ( R `  i )  e.  RR )
7473rexrd 10089 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  ( R `  i )  e.  RR* )
7539a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  L  =  ( i  e.  X  |->  if ( ( A `  i
)  = -oo , 
( ( F `  i )  -  1 ) ,  ( A `
 i ) ) ) )
7638elexd 3214 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  X )  ->  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) )  e.  _V )
7775, 76fvmpt2d 6293 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  X )  ->  ( L `  i )  =  if ( ( A `
 i )  = -oo ,  ( ( F `  i )  -  1 ) ,  ( A `  i
) ) )
7877adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  ( L `  i )  =  if ( ( A `
 i )  = -oo ,  ( ( F `  i )  -  1 ) ,  ( A `  i
) ) )
7978, 5eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  ( L `  i )  =  ( ( F `
 i )  - 
1 ) )
8011ltm1d 10956 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  X )  ->  (
( F `  i
)  -  1 )  <  ( F `  i ) )
8180adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  (
( F `  i
)  -  1 )  <  ( F `  i ) )
8279, 81eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  ( L `  i )  <  ( F `  i
) )
8377adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  -> 
( L `  i
)  =  if ( ( A `  i
)  = -oo , 
( ( F `  i )  -  1 ) ,  ( A `
 i ) ) )
8483, 17eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  -> 
( L `  i
)  =  ( A `
 i ) )
8530adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  -> 
( A `  i
)  <  ( F `  i ) )
8684, 85eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  -> 
( L `  i
)  <  ( F `  i ) )
8782, 86pm2.61dan 832 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  ( L `  i )  <  ( F `  i
) )
8811ltp1d 10954 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  i )  <  ( ( F `  i )  +  1 ) )
8988adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( F `  i )  <  ( ( F `  i )  +  1 ) )
9064a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  =  ( i  e.  X  |->  if ( ( B `  i
)  = +oo , 
( ( F `  i )  +  1 ) ,  ( B `
 i ) ) ) )
9163elexd 3214 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  X )  ->  if ( ( B `  i )  = +oo ,  ( ( F `
 i )  +  1 ) ,  ( B `  i ) )  e.  _V )
9290, 91fvmpt2d 6293 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  X )  ->  ( R `  i )  =  if ( ( B `
 i )  = +oo ,  ( ( F `  i )  +  1 ) ,  ( B `  i
) ) )
9392adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( R `  i )  =  if ( ( B `
 i )  = +oo ,  ( ( F `  i )  +  1 ) ,  ( B `  i
) ) )
9493, 42eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( R `  i )  =  ( ( F `
 i )  +  1 ) )
9594eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  (
( F `  i
)  +  1 )  =  ( R `  i ) )
9689, 95breqtrd 4679 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( F `  i )  <  ( R `  i
) )
9755adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( F `  i
)  <  ( B `  i ) )
9892adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( R `  i
)  =  if ( ( B `  i
)  = +oo , 
( ( F `  i )  +  1 ) ,  ( B `
 i ) ) )
9998, 47eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( R `  i
)  =  ( B `
 i ) )
10099eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( B `  i
)  =  ( R `
 i ) )
10197, 100breqtrd 4679 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( F `  i
)  <  ( R `  i ) )
10296, 101pm2.61dan 832 . . . . . . . 8  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  i )  <  ( R `  i
) )
10372, 74, 11, 87, 102eliood 39720 . . . . . . 7  |-  ( (
ph  /\  i  e.  X )  ->  ( F `  i )  e.  ( ( L `  i ) (,) ( R `  i )
) )
104103ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. i  e.  X  ( F `  i )  e.  ( ( L `
 i ) (,) ( R `  i
) ) )
10568, 70, 1043jca 1242 . . . . 5  |-  ( ph  ->  ( F  e.  _V  /\  F  Fn  X  /\  A. i  e.  X  ( F `  i )  e.  ( ( L `
 i ) (,) ( R `  i
) ) ) )
106 elixp2 7912 . . . . 5  |-  ( F  e.  X_ i  e.  X  ( ( L `  i ) (,) ( R `  i )
)  <->  ( F  e. 
_V  /\  F  Fn  X  /\  A. i  e.  X  ( F `  i )  e.  ( ( L `  i
) (,) ( R `
 i ) ) ) )
107105, 106sylibr 224 . . . 4  |-  ( ph  ->  F  e.  X_ i  e.  X  ( ( L `  i ) (,) ( R `  i
) ) )
108107, 1syl6eleqr 2712 . . 3  |-  ( ph  ->  F  e.  V )
10921adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  ( A `  i )  e.  RR* )
11072adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  ( L `  i )  e.  RR* )
11115mnfltd 11958 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  -> -oo  <  if ( ( A `  i )  = -oo ,  ( ( F `
 i )  - 
1 ) ,  ( A `  i ) ) )
112111, 5breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  -> -oo  <  ( ( F `  i
)  -  1 ) )
113 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  ( A `  i )  = -oo )
114113, 79breq12d 4666 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  (
( A `  i
)  <  ( L `  i )  <-> -oo  <  (
( F `  i
)  -  1 ) ) )
115112, 114mpbird 247 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  ( A `  i )  <  ( L `  i
) )
116109, 110, 115xrltled 39486 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  ( A `  i )  = -oo )  ->  ( A `  i )  <_  ( L `  i
) )
11784eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  -> 
( A `  i
)  =  ( L `
 i ) )
11836, 117eqled 10140 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( A `  i )  = -oo )  -> 
( A `  i
)  <_  ( L `  i ) )
119116, 118pm2.61dan 832 . . . . . . 7  |-  ( (
ph  /\  i  e.  X )  ->  ( A `  i )  <_  ( L `  i
) )
12074adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( R `  i )  e.  RR* )
12128adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( B `  i )  e.  RR* )
12244ltpnfd 11955 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  (
( F `  i
)  +  1 )  < +oo )
123 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( B `  i )  = +oo )
12494, 123breq12d 4666 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  (
( R `  i
)  <  ( B `  i )  <->  ( ( F `  i )  +  1 )  < +oo ) )
125122, 124mpbird 247 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( R `  i )  <  ( B `  i
) )
126120, 121, 125xrltled 39486 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  ( B `  i )  = +oo )  ->  ( R `  i )  <_  ( B `  i
) )
12773adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( R `  i
)  e.  RR )
128127, 99eqled 10140 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  X )  /\  -.  ( B `  i )  = +oo )  -> 
( R `  i
)  <_  ( B `  i ) )
129126, 128pm2.61dan 832 . . . . . . 7  |-  ( (
ph  /\  i  e.  X )  ->  ( R `  i )  <_  ( B `  i
) )
130 ioossioo 12265 . . . . . . 7  |-  ( ( ( ( A `  i )  e.  RR*  /\  ( B `  i
)  e.  RR* )  /\  ( ( A `  i )  <_  ( L `  i )  /\  ( R `  i
)  <_  ( B `  i ) ) )  ->  ( ( L `
 i ) (,) ( R `  i
) )  C_  (
( A `  i
) (,) ( B `
 i ) ) )
13121, 28, 119, 129, 130syl22anc 1327 . . . . . 6  |-  ( (
ph  /\  i  e.  X )  ->  (
( L `  i
) (,) ( R `
 i ) ) 
C_  ( ( A `
 i ) (,) ( B `  i
) ) )
132131ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. i  e.  X  ( ( L `  i ) (,) ( R `  i )
)  C_  ( ( A `  i ) (,) ( B `  i
) ) )
133 ss2ixp 7921 . . . . 5  |-  ( A. i  e.  X  (
( L `  i
) (,) ( R `
 i ) ) 
C_  ( ( A `
 i ) (,) ( B `  i
) )  ->  X_ i  e.  X  ( ( L `  i ) (,) ( R `  i
) )  C_  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i
) ) )
134132, 133syl 17 . . . 4  |-  ( ph  -> 
X_ i  e.  X  ( ( L `  i ) (,) ( R `  i )
)  C_  X_ i  e.  X  ( ( A `
 i ) (,) ( B `  i
) ) )
1352, 134eqsstrd 3639 . . 3  |-  ( ph  ->  V  C_  X_ i  e.  X  ( ( A `
 i ) (,) ( B `  i
) ) )
136108, 135jca 554 . 2  |-  ( ph  ->  ( F  e.  V  /\  V  C_  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i
) ) ) )
137 eleq2 2690 . . . 4  |-  ( v  =  V  ->  ( F  e.  v  <->  F  e.  V ) )
138 sseq1 3626 . . . 4  |-  ( v  =  V  ->  (
v  C_  X_ i  e.  X  ( ( A `
 i ) (,) ( B `  i
) )  <->  V  C_  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i
) ) ) )
139137, 138anbi12d 747 . . 3  |-  ( v  =  V  ->  (
( F  e.  v  /\  v  C_  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i
) ) )  <->  ( F  e.  V  /\  V  C_  X_ i  e.  X  ( ( A `  i
) (,) ( B `
 i ) ) ) ) )
140139rspcev 3309 . 2  |-  ( ( V  e.  ( TopOpen `  (ℝ^ `  X ) )  /\  ( F  e.  V  /\  V  C_  X_ i  e.  X  ( ( A `  i
) (,) ( B `
 i ) ) ) )  ->  E. v  e.  ( TopOpen `  (ℝ^ `  X
) ) ( F  e.  v  /\  v  C_  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i )
) ) )
14167, 136, 140syl2anc 693 1  |-  ( ph  ->  E. v  e.  (
TopOpen `  (ℝ^ `  X
) ) ( F  e.  v  /\  v  C_  X_ i  e.  X  ( ( A `  i ) (,) ( B `  i )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   X_cixp 7908   Fincfn 7955   RRcr 9935   1c1 9937    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   (,)cioo 12175   TopOpenctopn 16082  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-abv 18817  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-refld 19951  df-phl 19971  df-dsmm 20076  df-frlm 20091  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nrg 22390  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969  df-rrx 23173
This theorem is referenced by:  ioorrnopnxr  40527
  Copyright terms: Public domain W3C validator