MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plypf1 Structured version   Visualization version   GIF version

Theorem plypf1 23968
Description: Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.)
Hypotheses
Ref Expression
plypf1.r 𝑅 = (ℂflds 𝑆)
plypf1.p 𝑃 = (Poly1𝑅)
plypf1.a 𝐴 = (Base‘𝑃)
plypf1.e 𝐸 = (eval1‘ℂfld)
Assertion
Ref Expression
plypf1 (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))

Proof of Theorem plypf1
Dummy variables 𝑓 𝑎 𝑘 𝑛 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 23951 . . . . 5 (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 480 . . . 4 (𝑓 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
3 eqid 2622 . . . . . . . . 9 (ℂflds ℂ) = (ℂflds ℂ)
4 cnfldbas 19750 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5 eqid 2622 . . . . . . . . 9 (0g‘(ℂflds ℂ)) = (0g‘(ℂflds ℂ))
6 cnex 10017 . . . . . . . . . 10 ℂ ∈ V
76a1i 11 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → ℂ ∈ V)
8 fzfid 12772 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (0...𝑛) ∈ Fin)
9 cnring 19768 . . . . . . . . . 10 fld ∈ Ring
10 ringcmn 18581 . . . . . . . . . 10 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
119, 10mp1i 13 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → ℂfld ∈ CMnd)
124subrgss 18781 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1312ad2antrr 762 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ⊆ ℂ)
14 elmapi 7879 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
1514ad2antll 765 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
16 subrgsubg 18786 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
17 cnfld0 19770 . . . . . . . . . . . . . . . . . . . 20 0 = (0g‘ℂfld)
1817subg0cl 17602 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
1916, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
2019adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 0 ∈ 𝑆)
2120snssd 4340 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → {0} ⊆ 𝑆)
22 ssequn2 3786 . . . . . . . . . . . . . . . 16 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
2321, 22sylib 208 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑆 ∪ {0}) = 𝑆)
2423feq3d 6032 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑎:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑎:ℕ0𝑆))
2515, 24mpbid 222 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0𝑆)
26 elfznn0 12433 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
27 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝑎:ℕ0𝑆𝑘 ∈ ℕ0) → (𝑎𝑘) ∈ 𝑆)
2825, 26, 27syl2an 494 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ 𝑆)
2913, 28sseldd 3604 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
3029adantrl 752 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑎𝑘) ∈ ℂ)
31 simprl 794 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑧 ∈ ℂ)
3226ad2antll 765 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑘 ∈ ℕ0)
33 expcl 12878 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
3431, 32, 33syl2anc 693 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑧𝑘) ∈ ℂ)
3530, 34mulcld 10060 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
36 eqid 2622 . . . . . . . . . 10 (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
376mptex 6486 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ V
3837a1i 11 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ V)
39 fvex 6201 . . . . . . . . . . 11 (0g‘(ℂflds ℂ)) ∈ V
4039a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (0g‘(ℂflds ℂ)) ∈ V)
4136, 8, 38, 40fsuppmptdm 8286 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
423, 4, 5, 7, 8, 11, 35, 41pwsgsum 18378 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘))))))
43 fzfid 12772 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin)
4435anassrs 680 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
4543, 44gsumfsum 19813 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
4645mpteq2dva 4744 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
4742, 46eqtrd 2656 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
483pwsring 18615 . . . . . . . . . 10 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → (ℂflds ℂ) ∈ Ring)
499, 6, 48mp2an 708 . . . . . . . . 9 (ℂflds ℂ) ∈ Ring
50 ringcmn 18581 . . . . . . . . 9 ((ℂflds ℂ) ∈ Ring → (ℂflds ℂ) ∈ CMnd)
5149, 50mp1i 13 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (ℂflds ℂ) ∈ CMnd)
52 cncrng 19767 . . . . . . . . . . 11 fld ∈ CRing
53 plypf1.e . . . . . . . . . . . 12 𝐸 = (eval1‘ℂfld)
54 eqid 2622 . . . . . . . . . . . 12 (Poly1‘ℂfld) = (Poly1‘ℂfld)
5553, 54, 3, 4evl1rhm 19696 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)))
5652, 55ax-mp 5 . . . . . . . . . 10 𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ))
57 plypf1.r . . . . . . . . . . . 12 𝑅 = (ℂflds 𝑆)
58 plypf1.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
59 plypf1.a . . . . . . . . . . . 12 𝐴 = (Base‘𝑃)
6054, 57, 58, 59subrgply1 19603 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘ℂfld) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
6160adantr 481 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
62 rhmima 18811 . . . . . . . . . 10 ((𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) ∧ 𝐴 ∈ (SubRing‘(Poly1‘ℂfld))) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
6356, 61, 62sylancr 695 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
64 subrgsubg 18786 . . . . . . . . 9 ((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) → (𝐸𝐴) ∈ (SubGrp‘(ℂflds ℂ)))
65 subgsubm 17616 . . . . . . . . 9 ((𝐸𝐴) ∈ (SubGrp‘(ℂflds ℂ)) → (𝐸𝐴) ∈ (SubMnd‘(ℂflds ℂ)))
6663, 64, 653syl 18 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝐸𝐴) ∈ (SubMnd‘(ℂflds ℂ)))
67 eqid 2622 . . . . . . . . . . . 12 (Base‘(ℂflds ℂ)) = (Base‘(ℂflds ℂ))
689a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂfld ∈ Ring)
696a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂ ∈ V)
70 fconst6g 6094 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ ℂ → (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
7129, 70syl 17 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
723, 4, 67pwselbasb 16148 . . . . . . . . . . . . . 14 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → ((ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)) ↔ (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ))
739, 6, 72mp2an 708 . . . . . . . . . . . . 13 ((ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)) ↔ (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
7471, 73sylibr 224 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)))
7534anass1rs 849 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
76 eqid 2622 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ ↦ (𝑧𝑘)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘))
7775, 76fmptd 6385 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ)
783, 4, 67pwselbasb 16148 . . . . . . . . . . . . . 14 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ))
799, 6, 78mp2an 708 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ)
8077, 79sylibr 224 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)))
81 cnfldmul 19752 . . . . . . . . . . . 12 · = (.r‘ℂfld)
82 eqid 2622 . . . . . . . . . . . 12 (.r‘(ℂflds ℂ)) = (.r‘(ℂflds ℂ))
833, 67, 68, 69, 74, 80, 81, 82pwsmulrval 16151 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) = ((ℂ × {(𝑎𝑘)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (𝑧𝑘))))
8429adantr 481 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑎𝑘) ∈ ℂ)
85 fconstmpt 5163 . . . . . . . . . . . . 13 (ℂ × {(𝑎𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎𝑘))
8685a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎𝑘)))
87 eqidd 2623 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
8869, 84, 75, 86, 87offval2 6914 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
8983, 88eqtrd 2656 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
9063adantr 481 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
91 eqid 2622 . . . . . . . . . . . . . 14 (algSc‘(Poly1‘ℂfld)) = (algSc‘(Poly1‘ℂfld))
9253, 54, 4, 91evl1sca 19698 . . . . . . . . . . . . 13 ((ℂfld ∈ CRing ∧ (𝑎𝑘) ∈ ℂ) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) = (ℂ × {(𝑎𝑘)}))
9352, 29, 92sylancr 695 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) = (ℂ × {(𝑎𝑘)}))
94 eqid 2622 . . . . . . . . . . . . . . . 16 (Base‘(Poly1‘ℂfld)) = (Base‘(Poly1‘ℂfld))
9594, 67rhmf 18726 . . . . . . . . . . . . . . 15 (𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)))
9656, 95ax-mp 5 . . . . . . . . . . . . . 14 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ))
97 ffn 6045 . . . . . . . . . . . . . 14 (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)) → 𝐸 Fn (Base‘(Poly1‘ℂfld)))
9896, 97mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐸 Fn (Base‘(Poly1‘ℂfld)))
9994subrgss 18781 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubRing‘(Poly1‘ℂfld)) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
10060, 99syl 17 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubRing‘ℂfld) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
101100ad2antrr 762 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
102 simpll 790 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ∈ (SubRing‘ℂfld))
10354, 91, 57, 58, 102, 59, 4, 29subrg1asclcl 19630 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴 ↔ (𝑎𝑘) ∈ 𝑆))
10428, 103mpbird 247 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴)
105 fnfvima 6496 . . . . . . . . . . . . 13 ((𝐸 Fn (Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆ (Base‘(Poly1‘ℂfld)) ∧ ((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) ∈ (𝐸𝐴))
10698, 101, 104, 105syl3anc 1326 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) ∈ (𝐸𝐴))
10793, 106eqeltrrd 2702 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) ∈ (𝐸𝐴))
10867subrgss 18781 . . . . . . . . . . . . . . . . 17 ((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) → (𝐸𝐴) ⊆ (Base‘(ℂflds ℂ)))
10990, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸𝐴) ⊆ (Base‘(ℂflds ℂ)))
11060ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
111 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (mulGrp‘(Poly1‘ℂfld)) = (mulGrp‘(Poly1‘ℂfld))
112111subrgsubm 18793 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (SubRing‘(Poly1‘ℂfld)) → 𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))))
113110, 112syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))))
11426adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
115 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (var1‘ℂfld) = (var1‘ℂfld)
116115, 102, 57, 58, 59subrgvr1cl 19632 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (var1‘ℂfld) ∈ 𝐴)
117 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (.g‘(mulGrp‘(Poly1‘ℂfld))) = (.g‘(mulGrp‘(Poly1‘ℂfld)))
118117submmulgcl 17585 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))) ∧ 𝑘 ∈ ℕ0 ∧ (var1‘ℂfld) ∈ 𝐴) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴)
119113, 114, 116, 118syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴)
120 fnfvima 6496 . . . . . . . . . . . . . . . . 17 ((𝐸 Fn (Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆ (Base‘(Poly1‘ℂfld)) ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (𝐸𝐴))
12198, 101, 119, 120syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (𝐸𝐴))
122109, 121sseldd 3604 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(ℂflds ℂ)))
1233, 4, 67, 68, 69, 122pwselbas 16149 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))):ℂ⟶ℂ)
124123feqmptd 6249 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) = (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)))
12552a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CRing)
126 simpr 477 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
12753, 115, 4, 54, 94, 125, 126evl1vard 19701 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧))
128 eqid 2622 . . . . . . . . . . . . . . . . 17 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
129114adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
13053, 54, 4, 94, 125, 126, 127, 117, 128, 129evl1expd 19709 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)))
131130simprd 479 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧))
132 cnfldexp 19779 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
133126, 129, 132syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
134131, 133eqtrd 2656 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘))
135134mpteq2dva 4744 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
136124, 135eqtrd 2656 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
137136, 121eqeltrrd 2702 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (𝐸𝐴))
13882subrgmcl 18792 . . . . . . . . . . 11 (((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) ∧ (ℂ × {(𝑎𝑘)}) ∈ (𝐸𝐴) ∧ (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (𝐸𝐴)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) ∈ (𝐸𝐴))
13990, 107, 137, 138syl3anc 1326 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) ∈ (𝐸𝐴))
14089, 139eqeltrrd 2702 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴))
141140, 36fmptd 6385 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))):(0...𝑛)⟶(𝐸𝐴))
14236, 8, 140, 40fsuppmptdm 8286 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
1435, 51, 8, 66, 141, 142gsumsubmcl 18319 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) ∈ (𝐸𝐴))
14447, 143eqeltrrd 2702 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴))
145 eleq1 2689 . . . . . 6 (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → (𝑓 ∈ (𝐸𝐴) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴)))
146144, 145syl5ibrcom 237 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝑓 ∈ (𝐸𝐴)))
147146rexlimdvva 3038 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝑓 ∈ (𝐸𝐴)))
1482, 147syl5 34 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (𝐸𝐴)))
149 ffun 6048 . . . . . 6 (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)) → Fun 𝐸)
15096, 149ax-mp 5 . . . . 5 Fun 𝐸
151 fvelima 6248 . . . . 5 ((Fun 𝐸𝑓 ∈ (𝐸𝐴)) → ∃𝑎𝐴 (𝐸𝑎) = 𝑓)
152150, 151mpan 706 . . . 4 (𝑓 ∈ (𝐸𝐴) → ∃𝑎𝐴 (𝐸𝑎) = 𝑓)
153100sselda 3603 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑎 ∈ (Base‘(Poly1‘ℂfld)))
154 eqid 2622 . . . . . . . . . . . 12 ( ·𝑠 ‘(Poly1‘ℂfld)) = ( ·𝑠 ‘(Poly1‘ℂfld))
155 eqid 2622 . . . . . . . . . . . 12 (coe1𝑎) = (coe1𝑎)
15654, 115, 94, 154, 111, 117, 155ply1coe 19666 . . . . . . . . . . 11 ((ℂfld ∈ Ring ∧ 𝑎 ∈ (Base‘(Poly1‘ℂfld))) → 𝑎 = ((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
1579, 153, 156sylancr 695 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑎 = ((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
158157fveq2d 6195 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))))
159 eqid 2622 . . . . . . . . . 10 (0g‘(Poly1‘ℂfld)) = (0g‘(Poly1‘ℂfld))
16054ply1ring 19618 . . . . . . . . . . . 12 (ℂfld ∈ Ring → (Poly1‘ℂfld) ∈ Ring)
1619, 160ax-mp 5 . . . . . . . . . . 11 (Poly1‘ℂfld) ∈ Ring
162 ringcmn 18581 . . . . . . . . . . 11 ((Poly1‘ℂfld) ∈ Ring → (Poly1‘ℂfld) ∈ CMnd)
163161, 162mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (Poly1‘ℂfld) ∈ CMnd)
164 ringmnd 18556 . . . . . . . . . . 11 ((ℂflds ℂ) ∈ Ring → (ℂflds ℂ) ∈ Mnd)
16549, 164mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (ℂflds ℂ) ∈ Mnd)
166 nn0ex 11298 . . . . . . . . . . 11 0 ∈ V
167166a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℕ0 ∈ V)
168 rhmghm 18725 . . . . . . . . . . . 12 (𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) → 𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ)))
16956, 168ax-mp 5 . . . . . . . . . . 11 𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ))
170 ghmmhm 17670 . . . . . . . . . . 11 (𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ)) → 𝐸 ∈ ((Poly1‘ℂfld) MndHom (ℂflds ℂ)))
171169, 170mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸 ∈ ((Poly1‘ℂfld) MndHom (ℂflds ℂ)))
17254ply1lmod 19622 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (Poly1‘ℂfld) ∈ LMod)
1739, 172mp1i 13 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (Poly1‘ℂfld) ∈ LMod)
17412ad2antrr 762 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆ ℂ)
175 eqid 2622 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
176155, 59, 58, 175coe1f 19581 . . . . . . . . . . . . . . . 16 (𝑎𝐴 → (coe1𝑎):ℕ0⟶(Base‘𝑅))
17757subrgbas 18789 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 = (Base‘𝑅))
178177feq3d 6032 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (SubRing‘ℂfld) → ((coe1𝑎):ℕ0𝑆 ↔ (coe1𝑎):ℕ0⟶(Base‘𝑅)))
179176, 178syl5ibr 236 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubRing‘ℂfld) → (𝑎𝐴 → (coe1𝑎):ℕ0𝑆))
180179imp 445 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎):ℕ0𝑆)
181180ffvelrnda 6359 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ 𝑆)
182174, 181sseldd 3604 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ ℂ)
183111ringmgp 18553 . . . . . . . . . . . . . 14 ((Poly1‘ℂfld) ∈ Ring → (mulGrp‘(Poly1‘ℂfld)) ∈ Mnd)
184161, 183mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘(Poly1‘ℂfld)) ∈ Mnd)
185 simpr 477 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
186115, 54, 94vr1cl 19587 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)))
1879, 186mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)))
188111, 94mgpbas 18495 . . . . . . . . . . . . . 14 (Base‘(Poly1‘ℂfld)) = (Base‘(mulGrp‘(Poly1‘ℂfld)))
189188, 117mulgnn0cl 17558 . . . . . . . . . . . . 13 (((mulGrp‘(Poly1‘ℂfld)) ∈ Mnd ∧ 𝑘 ∈ ℕ0 ∧ (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld))) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)))
190184, 185, 187, 189syl3anc 1326 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)))
19154ply1sca 19623 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld = (Scalar‘(Poly1‘ℂfld)))
1929, 191ax-mp 5 . . . . . . . . . . . . 13 fld = (Scalar‘(Poly1‘ℂfld))
19394, 192, 154, 4lmodvscl 18880 . . . . . . . . . . . 12 (((Poly1‘ℂfld) ∈ LMod ∧ ((coe1𝑎)‘𝑘) ∈ ℂ ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld))) → (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)))
194173, 182, 190, 193syl3anc 1326 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)))
195 eqid 2622 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
196194, 195fmptd 6385 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℕ0⟶(Base‘(Poly1‘ℂfld)))
197166mptex 6486 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V
198 funmpt 5926 . . . . . . . . . . . . 13 Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
199 fvex 6201 . . . . . . . . . . . . 13 (0g‘(Poly1‘ℂfld)) ∈ V
200197, 198, 1993pm3.2i 1239 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V)
201200a1i 11 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V))
202155, 94, 54, 17coe1sfi 19583 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (coe1𝑎) finSupp 0)
203153, 202syl 17 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎) finSupp 0)
204203fsuppimpd 8282 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((coe1𝑎) supp 0) ∈ Fin)
205180feqmptd 6249 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎) = (𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)))
206205oveq1d 6665 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((coe1𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0))
207 eqimss2 3658 . . . . . . . . . . . . 13 (((coe1𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) ⊆ ((coe1𝑎) supp 0))
208206, 207syl 17 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) ⊆ ((coe1𝑎) supp 0))
2099, 172mp1i 13 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (Poly1‘ℂfld) ∈ LMod)
21094, 192, 154, 17, 159lmod0vs 18896 . . . . . . . . . . . . 13 (((Poly1‘ℂfld) ∈ LMod ∧ 𝑥 ∈ (Base‘(Poly1‘ℂfld))) → (0( ·𝑠 ‘(Poly1‘ℂfld))𝑥) = (0g‘(Poly1‘ℂfld)))
211209, 210sylan 488 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑥 ∈ (Base‘(Poly1‘ℂfld))) → (0( ·𝑠 ‘(Poly1‘ℂfld))𝑥) = (0g‘(Poly1‘ℂfld)))
212 c0ex 10034 . . . . . . . . . . . . 13 0 ∈ V
213212a1i 11 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 0 ∈ V)
214208, 211, 181, 190, 213suppssov1 7327 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1𝑎) supp 0))
215 suppssfifsupp 8290 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V) ∧ (((coe1𝑎) supp 0) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1𝑎) supp 0))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) finSupp (0g‘(Poly1‘ℂfld)))
216201, 204, 214, 215syl12anc 1324 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) finSupp (0g‘(Poly1‘ℂfld)))
21794, 159, 163, 165, 167, 171, 196, 216gsummhm 18338 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) = (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))))
218 eqidd 2623 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))
21996a1i 11 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)))
220219feqmptd 6249 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸 = (𝑥 ∈ (Base‘(Poly1‘ℂfld)) ↦ (𝐸𝑥)))
221 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) → (𝐸𝑥) = (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))
222194, 218, 220, 221fmptco 6396 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
2239a1i 11 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ℂfld ∈ Ring)
2246a1i 11 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ℂ ∈ V)
22596ffvelrni 6358 . . . . . . . . . . . . . . . 16 ((((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ (Base‘(ℂflds ℂ)))
226194, 225syl 17 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ (Base‘(ℂflds ℂ)))
2273, 4, 67, 223, 224, 226pwselbas 16149 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℂ⟶ℂ)
228227feqmptd 6249 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)))
22952a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CRing)
230 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23153, 115, 4, 54, 94, 229, 230evl1vard 19701 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧))
232185adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
23353, 54, 4, 94, 229, 230, 231, 117, 128, 232evl1expd 19709 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)))
234230, 232, 132syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
235234eqeq2d 2632 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧) ↔ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘)))
236235anbi2d 740 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)) ↔ ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘))))
237233, 236mpbid 222 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘)))
238182adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((coe1𝑎)‘𝑘) ∈ ℂ)
23953, 54, 4, 94, 229, 230, 237, 238, 154, 81evl1vsd 19708 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
240239simprd 479 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
241240mpteq2dva 4744 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)) = (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
242228, 241eqtrd 2656 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
243242mpteq2dva 4744 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
244222, 243eqtrd 2656 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
245244oveq2d 6666 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) = ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
246158, 217, 2453eqtr2d 2662 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
2476a1i 11 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℂ ∈ V)
2489, 10mp1i 13 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℂfld ∈ CMnd)
249182adantlr 751 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ ℂ)
25033adantll 750 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
251249, 250mulcld 10060 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
252251anasss 679 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
253166mptex 6486 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V
254 funmpt 5926 . . . . . . . . . . . 12 Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
255253, 254, 393pm3.2i 1239 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V)
256255a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V))
257 fzfid 12772 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin)
258 eldifn 3733 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → ¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
259258adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
260153ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑎 ∈ (Base‘(Poly1‘ℂfld)))
261 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → 𝑘 ∈ ℕ0)
262261adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℕ0)
263 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 ( deg1 ‘ℂfld) = ( deg1 ‘ℂfld)
264263, 54, 94, 17, 155deg1ge 23858 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0 ∧ ((coe1𝑎)‘𝑘) ≠ 0) → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎))
2652643expia 1267 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎)))
266260, 262, 265syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎)))
267 0xr 10086 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
268263, 54, 94deg1xrcl 23842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
269153, 268syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
270269ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
271 xrmax2 12007 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*) → (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))
272267, 270, 271sylancr 695 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))
273262nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ)
274273rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ*)
275 ifcl 4130 . . . . . . . . . . . . . . . . . . . . . . . 24 (((( deg1 ‘ℂfld)‘𝑎) ∈ ℝ* ∧ 0 ∈ ℝ*) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*)
276270, 267, 275sylancl 694 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*)
277 xrletr 11989 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ* ∧ (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ* ∧ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*) → ((𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) ∧ (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
278274, 270, 276, 277syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ((𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) ∧ (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
279272, 278mpan2d 710 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
280266, 279syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
281280, 262jctild 566 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
282263, 54, 94deg1cl 23843 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
283153, 282syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
284 elun 3753 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}))
285283, 284sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}))
286 nn0ge0 11318 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → 0 ≤ (( deg1 ‘ℂfld)‘𝑎))
287286iftrued 4094 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) = (( deg1 ‘ℂfld)‘𝑎))
288 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → (( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0)
289287, 288eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
290 mnflt0 11959 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -∞ < 0
291 mnfxr 10096 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 -∞ ∈ ℝ*
292 xrltnle 10105 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
293291, 267, 292mp2an 708 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
294290, 293mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ¬ 0 ≤ -∞
295 elsni 4194 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → (( deg1 ‘ℂfld)‘𝑎) = -∞)
296295breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → (0 ≤ (( deg1 ‘ℂfld)‘𝑎) ↔ 0 ≤ -∞))
297294, 296mtbiri 317 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → ¬ 0 ≤ (( deg1 ‘ℂfld)‘𝑎))
298297iffalsed 4097 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) = 0)
299 0nn0 11307 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℕ0
300298, 299syl6eqel 2709 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
301289, 300jaoi 394 . . . . . . . . . . . . . . . . . . . . . 22 (((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
302285, 301syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
303302ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
304 fznn0 12432 . . . . . . . . . . . . . . . . . . . 20 (if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0 → (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
305303, 304syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
306281, 305sylibrd 249 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
307306necon1bd 2812 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → ((coe1𝑎)‘𝑘) = 0))
308259, 307mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ((coe1𝑎)‘𝑘) = 0)
309308oveq1d 6665 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
310261, 250sylan2 491 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧𝑘) ∈ ℂ)
311310mul02d 10234 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (0 · (𝑧𝑘)) = 0)
312309, 311eqtrd 2656 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = 0)
313312an32s 846 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) ∧ 𝑧 ∈ ℂ) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = 0)
314313mpteq2dva 4744 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ 0))
315 fconstmpt 5163 . . . . . . . . . . . . 13 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
316 ringmnd 18556 . . . . . . . . . . . . . . 15 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
3179, 316ax-mp 5 . . . . . . . . . . . . . 14 fld ∈ Mnd
3183, 17pws0g 17326 . . . . . . . . . . . . . 14 ((ℂfld ∈ Mnd ∧ ℂ ∈ V) → (ℂ × {0}) = (0g‘(ℂflds ℂ)))
319317, 6, 318mp2an 708 . . . . . . . . . . . . 13 (ℂ × {0}) = (0g‘(ℂflds ℂ))
320315, 319eqtr3i 2646 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ 0) = (0g‘(ℂflds ℂ))
321314, 320syl6eq 2672 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (0g‘(ℂflds ℂ)))
322321, 167suppss2 7329 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) supp (0g‘(ℂflds ℂ))) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
323 suppssfifsupp 8290 . . . . . . . . . 10 ((((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V) ∧ ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) supp (0g‘(ℂflds ℂ))) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
324256, 257, 322, 323syl12anc 1324 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
3253, 4, 5, 247, 167, 248, 252, 324pwsgsum 18378 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
326 fz0ssnn0 12435 . . . . . . . . . . . 12 (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ⊆ ℕ0
327 resmpt 5449 . . . . . . . . . . . 12 ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ⊆ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
328326, 327ax-mp 5 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
329328oveq2i 6661 . . . . . . . . . 10 (ℂfld Σg ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) = (ℂfld Σg (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
3309, 10mp1i 13 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CMnd)
331166a1i 11 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ℕ0 ∈ V)
332 eqid 2622 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
333251, 332fmptd 6385 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))):ℕ0⟶ℂ)
334312, 331suppss2 7329 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) supp 0) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
335166mptex 6486 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V
336 funmpt 5926 . . . . . . . . . . . . . 14 Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
337335, 336, 2123pm3.2i 1239 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V)
338337a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V))
339 fzfid 12772 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin)
340 suppssfifsupp 8290 . . . . . . . . . . . 12 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V) ∧ ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) supp 0) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) finSupp 0)
341338, 339, 334, 340syl12anc 1324 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) finSupp 0)
3424, 17, 330, 331, 333, 334, 341gsumres 18314 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) = (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
343 elfznn0 12433 . . . . . . . . . . . 12 (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ∈ ℕ0)
344343, 251sylan2 491 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
345339, 344gsumfsum 19813 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘)))
346329, 342, 3453eqtr3a 2680 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘)))
347346mpteq2dva 4744 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))))
348246, 325, 3473eqtrd 2660 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))))
34912adantr 481 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑆 ⊆ ℂ)
350 elplyr 23957 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0 ∧ (coe1𝑎):ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
351349, 302, 180, 350syl3anc 1326 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
352348, 351eqeltrd 2701 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) ∈ (Poly‘𝑆))
353 eleq1 2689 . . . . . 6 ((𝐸𝑎) = 𝑓 → ((𝐸𝑎) ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (Poly‘𝑆)))
354352, 353syl5ibcom 235 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝐸𝑎) = 𝑓𝑓 ∈ (Poly‘𝑆)))
355354rexlimdva 3031 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → (∃𝑎𝐴 (𝐸𝑎) = 𝑓𝑓 ∈ (Poly‘𝑆)))
356152, 355syl5 34 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (𝐸𝐴) → 𝑓 ∈ (Poly‘𝑆)))
357148, 356impbid 202 . 2 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (𝐸𝐴)))
358357eqrdv 2620 1 (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  cres 5116  cima 5117  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  cc 9934  0cc0 9936   · cmul 9941  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  0cn0 11292  ...cfz 12326  cexp 12860  Σcsu 14416  Basecbs 15857  s cress 15858  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101  s cpws 16107  Mndcmnd 17294   MndHom cmhm 17333  SubMndcsubmnd 17334  .gcmg 17540  SubGrpcsubg 17588   GrpHom cghm 17657  CMndccmn 18193  mulGrpcmgp 18489  Ringcrg 18547  CRingccrg 18548   RingHom crh 18712  SubRingcsubrg 18776  LModclmod 18863  algSccascl 19311  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548  eval1ce1 19679  fldccnfld 19746   deg1 cdg1 23814  Polycply 23940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-mdeg 23815  df-deg1 23816  df-ply 23944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator