| Step | Hyp | Ref
| Expression |
| 1 | | elply 23951 |
. . . . 5
⊢ (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 2 | 1 | simprbi 480 |
. . . 4
⊢ (𝑓 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 3 | | eqid 2622 |
. . . . . . . . 9
⊢
(ℂfld ↑s ℂ) =
(ℂfld ↑s ℂ) |
| 4 | | cnfldbas 19750 |
. . . . . . . . 9
⊢ ℂ =
(Base‘ℂfld) |
| 5 | | eqid 2622 |
. . . . . . . . 9
⊢
(0g‘(ℂfld ↑s
ℂ)) = (0g‘(ℂfld
↑s ℂ)) |
| 6 | | cnex 10017 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
| 7 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → ℂ ∈ V) |
| 8 | | fzfid 12772 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (0...𝑛) ∈ Fin) |
| 9 | | cnring 19768 |
. . . . . . . . . 10
⊢
ℂfld ∈ Ring |
| 10 | | ringcmn 18581 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
| 11 | 9, 10 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → ℂfld ∈
CMnd) |
| 12 | 4 | subrgss 18781 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
| 13 | 12 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ⊆ ℂ) |
| 14 | | elmapi 7879 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 15 | 14 | ad2antll 765 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 16 | | subrgsubg 18786 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 ∈
(SubGrp‘ℂfld)) |
| 17 | | cnfld0 19770 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 =
(0g‘ℂfld) |
| 18 | 17 | subg0cl 17602 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 ∈
(SubGrp‘ℂfld) → 0 ∈ 𝑆) |
| 19 | 16, 18 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 0 ∈ 𝑆) |
| 20 | 19 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 0 ∈ 𝑆) |
| 21 | 20 | snssd 4340 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → {0} ⊆ 𝑆) |
| 22 | | ssequn2 3786 |
. . . . . . . . . . . . . . . 16
⊢ ({0}
⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆) |
| 23 | 21, 22 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑆 ∪ {0}) = 𝑆) |
| 24 | 23 | feq3d 6032 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑎:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑎:ℕ0⟶𝑆)) |
| 25 | 15, 24 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑎:ℕ0⟶𝑆) |
| 26 | | elfznn0 12433 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 27 | | ffvelrn 6357 |
. . . . . . . . . . . . 13
⊢ ((𝑎:ℕ0⟶𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑎‘𝑘) ∈ 𝑆) |
| 28 | 25, 26, 27 | syl2an 494 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ 𝑆) |
| 29 | 13, 28 | sseldd 3604 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℂ) |
| 30 | 29 | adantrl 752 |
. . . . . . . . . 10
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑎‘𝑘) ∈ ℂ) |
| 31 | | simprl 794 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑧 ∈ ℂ) |
| 32 | 26 | ad2antll 765 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑘 ∈ ℕ0) |
| 33 | | expcl 12878 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
| 34 | 31, 32, 33 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑧↑𝑘) ∈ ℂ) |
| 35 | 30, 34 | mulcld 10060 |
. . . . . . . . 9
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → ((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 36 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 37 | 6 | mptex 6486 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))) ∈ V |
| 38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))) ∈ V) |
| 39 | | fvex 6201 |
. . . . . . . . . . 11
⊢
(0g‘(ℂfld ↑s
ℂ)) ∈ V |
| 40 | 39 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (0g‘(ℂfld
↑s ℂ)) ∈ V) |
| 41 | 36, 8, 38, 40 | fsuppmptdm 8286 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))) finSupp
(0g‘(ℂfld ↑s
ℂ))) |
| 42 | 3, 4, 5, 7, 8, 11,
35, 41 | pwsgsum 18378 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → ((ℂfld ↑s
ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))))) = (𝑧 ∈ ℂ ↦
(ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 43 | | fzfid 12772 |
. . . . . . . . . 10
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin) |
| 44 | 35 | anassrs 680 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 45 | 43, 44 | gsumfsum 19813 |
. . . . . . . . 9
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) →
(ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 46 | 45 | mpteq2dva 4744 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑧 ∈ ℂ ↦
(ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 47 | 42, 46 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → ((ℂfld ↑s
ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 48 | 3 | pwsring 18615 |
. . . . . . . . . 10
⊢
((ℂfld ∈ Ring ∧ ℂ ∈ V) →
(ℂfld ↑s ℂ) ∈
Ring) |
| 49 | 9, 6, 48 | mp2an 708 |
. . . . . . . . 9
⊢
(ℂfld ↑s ℂ) ∈
Ring |
| 50 | | ringcmn 18581 |
. . . . . . . . 9
⊢
((ℂfld ↑s ℂ) ∈ Ring
→ (ℂfld ↑s ℂ) ∈
CMnd) |
| 51 | 49, 50 | mp1i 13 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (ℂfld ↑s
ℂ) ∈ CMnd) |
| 52 | | cncrng 19767 |
. . . . . . . . . . 11
⊢
ℂfld ∈ CRing |
| 53 | | plypf1.e |
. . . . . . . . . . . 12
⊢ 𝐸 =
(eval1‘ℂfld) |
| 54 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Poly1‘ℂfld) =
(Poly1‘ℂfld) |
| 55 | 53, 54, 3, 4 | evl1rhm 19696 |
. . . . . . . . . . 11
⊢
(ℂfld ∈ CRing → 𝐸 ∈
((Poly1‘ℂfld) RingHom (ℂfld
↑s ℂ))) |
| 56 | 52, 55 | ax-mp 5 |
. . . . . . . . . 10
⊢ 𝐸 ∈
((Poly1‘ℂfld) RingHom (ℂfld
↑s ℂ)) |
| 57 | | plypf1.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (ℂfld
↾s 𝑆) |
| 58 | | plypf1.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (Poly1‘𝑅) |
| 59 | | plypf1.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (Base‘𝑃) |
| 60 | 54, 57, 58, 59 | subrgply1 19603 |
. . . . . . . . . . 11
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝐴 ∈
(SubRing‘(Poly1‘ℂfld))) |
| 61 | 60 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝐴 ∈
(SubRing‘(Poly1‘ℂfld))) |
| 62 | | rhmima 18811 |
. . . . . . . . . 10
⊢ ((𝐸 ∈
((Poly1‘ℂfld) RingHom (ℂfld
↑s ℂ)) ∧ 𝐴 ∈
(SubRing‘(Poly1‘ℂfld))) → (𝐸 “ 𝐴) ∈
(SubRing‘(ℂfld ↑s
ℂ))) |
| 63 | 56, 61, 62 | sylancr 695 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝐸 “ 𝐴) ∈
(SubRing‘(ℂfld ↑s
ℂ))) |
| 64 | | subrgsubg 18786 |
. . . . . . . . 9
⊢ ((𝐸 “ 𝐴) ∈
(SubRing‘(ℂfld ↑s ℂ))
→ (𝐸 “ 𝐴) ∈
(SubGrp‘(ℂfld ↑s
ℂ))) |
| 65 | | subgsubm 17616 |
. . . . . . . . 9
⊢ ((𝐸 “ 𝐴) ∈
(SubGrp‘(ℂfld ↑s ℂ)) →
(𝐸 “ 𝐴) ∈
(SubMnd‘(ℂfld ↑s
ℂ))) |
| 66 | 63, 64, 65 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝐸 “ 𝐴) ∈
(SubMnd‘(ℂfld ↑s
ℂ))) |
| 67 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Base‘(ℂfld ↑s ℂ)) =
(Base‘(ℂfld ↑s
ℂ)) |
| 68 | 9 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂfld ∈
Ring) |
| 69 | 6 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂ ∈ V) |
| 70 | | fconst6g 6094 |
. . . . . . . . . . . . . 14
⊢ ((𝑎‘𝑘) ∈ ℂ → (ℂ ×
{(𝑎‘𝑘)}):ℂ⟶ℂ) |
| 71 | 29, 70 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎‘𝑘)}):ℂ⟶ℂ) |
| 72 | 3, 4, 67 | pwselbasb 16148 |
. . . . . . . . . . . . . 14
⊢
((ℂfld ∈ Ring ∧ ℂ ∈ V) →
((ℂ × {(𝑎‘𝑘)}) ∈ (Base‘(ℂfld
↑s ℂ)) ↔ (ℂ × {(𝑎‘𝑘)}):ℂ⟶ℂ)) |
| 73 | 9, 6, 72 | mp2an 708 |
. . . . . . . . . . . . 13
⊢ ((ℂ
× {(𝑎‘𝑘)}) ∈
(Base‘(ℂfld ↑s ℂ)) ↔
(ℂ × {(𝑎‘𝑘)}):ℂ⟶ℂ) |
| 74 | 71, 73 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎‘𝑘)}) ∈ (Base‘(ℂfld
↑s ℂ))) |
| 75 | 34 | anass1rs 849 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑧↑𝑘) ∈ ℂ) |
| 76 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) = (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) |
| 77 | 75, 76 | fmptd 6385 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)):ℂ⟶ℂ) |
| 78 | 3, 4, 67 | pwselbasb 16148 |
. . . . . . . . . . . . . 14
⊢
((ℂfld ∈ Ring ∧ ℂ ∈ V) →
((𝑧 ∈ ℂ ↦
(𝑧↑𝑘)) ∈ (Base‘(ℂfld
↑s ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)):ℂ⟶ℂ)) |
| 79 | 9, 6, 78 | mp2an 708 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) ∈ (Base‘(ℂfld
↑s ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)):ℂ⟶ℂ) |
| 80 | 77, 79 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) ∈ (Base‘(ℂfld
↑s ℂ))) |
| 81 | | cnfldmul 19752 |
. . . . . . . . . . . 12
⊢ ·
= (.r‘ℂfld) |
| 82 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(.r‘(ℂfld ↑s
ℂ)) = (.r‘(ℂfld
↑s ℂ)) |
| 83 | 3, 67, 68, 69, 74, 80, 81, 82 | pwsmulrval 16151 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎‘𝑘)})(.r‘(ℂfld
↑s ℂ))(𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) = ((ℂ × {(𝑎‘𝑘)}) ∘𝑓 ·
(𝑧 ∈ ℂ ↦
(𝑧↑𝑘)))) |
| 84 | 29 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑎‘𝑘) ∈ ℂ) |
| 85 | | fconstmpt 5163 |
. . . . . . . . . . . . 13
⊢ (ℂ
× {(𝑎‘𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎‘𝑘)) |
| 86 | 85 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎‘𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎‘𝑘))) |
| 87 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) = (𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) |
| 88 | 69, 84, 75, 86, 87 | offval2 6914 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎‘𝑘)}) ∘𝑓 ·
(𝑧 ∈ ℂ ↦
(𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 89 | 83, 88 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎‘𝑘)})(.r‘(ℂfld
↑s ℂ))(𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 90 | 63 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸 “ 𝐴) ∈
(SubRing‘(ℂfld ↑s
ℂ))) |
| 91 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(algSc‘(Poly1‘ℂfld)) =
(algSc‘(Poly1‘ℂfld)) |
| 92 | 53, 54, 4, 91 | evl1sca 19698 |
. . . . . . . . . . . . 13
⊢
((ℂfld ∈ CRing ∧ (𝑎‘𝑘) ∈ ℂ) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎‘𝑘))) =
(ℂ × {(𝑎‘𝑘)})) |
| 93 | 52, 29, 92 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎‘𝑘))) =
(ℂ × {(𝑎‘𝑘)})) |
| 94 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(Poly1‘ℂfld)) =
(Base‘(Poly1‘ℂfld)) |
| 95 | 94, 67 | rhmf 18726 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 ∈
((Poly1‘ℂfld) RingHom (ℂfld
↑s ℂ)) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂfld
↑s ℂ))) |
| 96 | 56, 95 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂfld
↑s ℂ)) |
| 97 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂfld
↑s ℂ)) → 𝐸 Fn
(Base‘(Poly1‘ℂfld))) |
| 98 | 96, 97 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐸 Fn
(Base‘(Poly1‘ℂfld))) |
| 99 | 94 | subrgss 18781 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈
(SubRing‘(Poly1‘ℂfld)) → 𝐴 ⊆
(Base‘(Poly1‘ℂfld))) |
| 100 | 60, 99 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝐴 ⊆
(Base‘(Poly1‘ℂfld))) |
| 101 | 100 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ⊆
(Base‘(Poly1‘ℂfld))) |
| 102 | | simpll 790 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ∈
(SubRing‘ℂfld)) |
| 103 | 54, 91, 57, 58, 102, 59, 4, 29 | subrg1asclcl 19630 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) →
(((algSc‘(Poly1‘ℂfld))‘(𝑎‘𝑘)) ∈ 𝐴 ↔ (𝑎‘𝑘) ∈ 𝑆)) |
| 104 | 28, 103 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) →
((algSc‘(Poly1‘ℂfld))‘(𝑎‘𝑘)) ∈ 𝐴) |
| 105 | | fnfvima 6496 |
. . . . . . . . . . . . 13
⊢ ((𝐸 Fn
(Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆
(Base‘(Poly1‘ℂfld)) ∧
((algSc‘(Poly1‘ℂfld))‘(𝑎‘𝑘)) ∈ 𝐴) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎‘𝑘)))
∈ (𝐸 “ 𝐴)) |
| 106 | 98, 101, 104, 105 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎‘𝑘)))
∈ (𝐸 “ 𝐴)) |
| 107 | 93, 106 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎‘𝑘)}) ∈ (𝐸 “ 𝐴)) |
| 108 | 67 | subrgss 18781 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸 “ 𝐴) ∈
(SubRing‘(ℂfld ↑s ℂ))
→ (𝐸 “ 𝐴) ⊆
(Base‘(ℂfld ↑s
ℂ))) |
| 109 | 90, 108 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸 “ 𝐴) ⊆ (Base‘(ℂfld
↑s ℂ))) |
| 110 | 60 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈
(SubRing‘(Poly1‘ℂfld))) |
| 111 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(mulGrp‘(Poly1‘ℂfld)) =
(mulGrp‘(Poly1‘ℂfld)) |
| 112 | 111 | subrgsubm 18793 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈
(SubRing‘(Poly1‘ℂfld)) → 𝐴 ∈
(SubMnd‘(mulGrp‘(Poly1‘ℂfld)))) |
| 113 | 110, 112 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈
(SubMnd‘(mulGrp‘(Poly1‘ℂfld)))) |
| 114 | 26 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
| 115 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(var1‘ℂfld) =
(var1‘ℂfld) |
| 116 | 115, 102,
57, 58, 59 | subrgvr1cl 19632 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) →
(var1‘ℂfld) ∈ 𝐴) |
| 117 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(.g‘(mulGrp‘(Poly1‘ℂfld)))
=
(.g‘(mulGrp‘(Poly1‘ℂfld))) |
| 118 | 117 | submmulgcl 17585 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈
(SubMnd‘(mulGrp‘(Poly1‘ℂfld)))
∧ 𝑘 ∈
ℕ0 ∧ (var1‘ℂfld) ∈
𝐴) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ 𝐴) |
| 119 | 113, 114,
116, 118 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ 𝐴) |
| 120 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸 Fn
(Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆
(Base‘(Poly1‘ℂfld)) ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ 𝐴) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
∈ (𝐸 “ 𝐴)) |
| 121 | 98, 101, 119, 120 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
∈ (𝐸 “ 𝐴)) |
| 122 | 109, 121 | sseldd 3604 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
∈ (Base‘(ℂfld ↑s ℂ))) |
| 123 | 3, 4, 67, 68, 69, 122 | pwselbas 16149 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))):ℂ⟶ℂ) |
| 124 | 123 | feqmptd 6249 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
= (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧))) |
| 125 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ℂfld
∈ CRing) |
| 126 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) |
| 127 | 53, 115, 4, 54, 94, 125, 126 | evl1vard 19701 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) →
((var1‘ℂfld) ∈
(Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧)) |
| 128 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
| 129 | 114 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0) |
| 130 | 53, 54, 4, 94, 125, 126, 127, 117, 128, 129 | evl1expd 19709 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧))) |
| 131 | 130 | simprd 479 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)) |
| 132 | | cnfldexp 19779 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧↑𝑘)) |
| 133 | 126, 129,
132 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧↑𝑘)) |
| 134 | 131, 133 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧↑𝑘)) |
| 135 | 134 | mpteq2dva 4744 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) |
| 136 | 124, 135 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
= (𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) |
| 137 | 136, 121 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) ∈ (𝐸 “ 𝐴)) |
| 138 | 82 | subrgmcl 18792 |
. . . . . . . . . . 11
⊢ (((𝐸 “ 𝐴) ∈
(SubRing‘(ℂfld ↑s ℂ)) ∧
(ℂ × {(𝑎‘𝑘)}) ∈ (𝐸 “ 𝐴) ∧ (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) ∈ (𝐸 “ 𝐴)) → ((ℂ × {(𝑎‘𝑘)})(.r‘(ℂfld
↑s ℂ))(𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) ∈ (𝐸 “ 𝐴)) |
| 139 | 90, 107, 137, 138 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎‘𝑘)})(.r‘(ℂfld
↑s ℂ))(𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) ∈ (𝐸 “ 𝐴)) |
| 140 | 89, 139 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))) ∈ (𝐸 “ 𝐴)) |
| 141 | 140, 36 | fmptd 6385 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))):(0...𝑛)⟶(𝐸 “ 𝐴)) |
| 142 | 36, 8, 140, 40 | fsuppmptdm 8286 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘)))) finSupp
(0g‘(ℂfld ↑s
ℂ))) |
| 143 | 5, 51, 8, 66, 141, 142 | gsumsubmcl 18319 |
. . . . . . 7
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → ((ℂfld ↑s
ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))))) ∈ (𝐸 “ 𝐴)) |
| 144 | 47, 143 | eqeltrrd 2702 |
. . . . . 6
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ∈ (𝐸 “ 𝐴)) |
| 145 | | eleq1 2689 |
. . . . . 6
⊢ (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → (𝑓 ∈ (𝐸 “ 𝐴) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ∈ (𝐸 “ 𝐴))) |
| 146 | 144, 145 | syl5ibrcom 237 |
. . . . 5
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝑓 ∈ (𝐸 “ 𝐴))) |
| 147 | 146 | rexlimdvva 3038 |
. . . 4
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝑓 ∈ (𝐸 “ 𝐴))) |
| 148 | 2, 147 | syl5 34 |
. . 3
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (𝐸 “ 𝐴))) |
| 149 | | ffun 6048 |
. . . . . 6
⊢ (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂfld
↑s ℂ)) → Fun 𝐸) |
| 150 | 96, 149 | ax-mp 5 |
. . . . 5
⊢ Fun 𝐸 |
| 151 | | fvelima 6248 |
. . . . 5
⊢ ((Fun
𝐸 ∧ 𝑓 ∈ (𝐸 “ 𝐴)) → ∃𝑎 ∈ 𝐴 (𝐸‘𝑎) = 𝑓) |
| 152 | 150, 151 | mpan 706 |
. . . 4
⊢ (𝑓 ∈ (𝐸 “ 𝐴) → ∃𝑎 ∈ 𝐴 (𝐸‘𝑎) = 𝑓) |
| 153 | 100 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈
(Base‘(Poly1‘ℂfld))) |
| 154 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (
·𝑠
‘(Poly1‘ℂfld)) = (
·𝑠
‘(Poly1‘ℂfld)) |
| 155 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(coe1‘𝑎) = (coe1‘𝑎) |
| 156 | 54, 115, 94, 154, 111, 117, 155 | ply1coe 19666 |
. . . . . . . . . . 11
⊢
((ℂfld ∈ Ring ∧ 𝑎 ∈
(Base‘(Poly1‘ℂfld))) → 𝑎 =
((Poly1‘ℂfld) Σg
(𝑘 ∈
ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) |
| 157 | 9, 153, 156 | sylancr 695 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → 𝑎 =
((Poly1‘ℂfld) Σg
(𝑘 ∈
ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) |
| 158 | 157 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝐸‘𝑎) = (𝐸‘((Poly1‘ℂfld)
Σg (𝑘 ∈
ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))) |
| 159 | | eqid 2622 |
. . . . . . . . . 10
⊢
(0g‘(Poly1‘ℂfld)) =
(0g‘(Poly1‘ℂfld)) |
| 160 | 54 | ply1ring 19618 |
. . . . . . . . . . . 12
⊢
(ℂfld ∈ Ring →
(Poly1‘ℂfld) ∈ Ring) |
| 161 | 9, 160 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(Poly1‘ℂfld) ∈
Ring |
| 162 | | ringcmn 18581 |
. . . . . . . . . . 11
⊢
((Poly1‘ℂfld) ∈ Ring →
(Poly1‘ℂfld) ∈ CMnd) |
| 163 | 161, 162 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) →
(Poly1‘ℂfld) ∈ CMnd) |
| 164 | | ringmnd 18556 |
. . . . . . . . . . 11
⊢
((ℂfld ↑s ℂ) ∈ Ring
→ (ℂfld ↑s ℂ) ∈
Mnd) |
| 165 | 49, 164 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (ℂfld
↑s ℂ) ∈ Mnd) |
| 166 | | nn0ex 11298 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 167 | 166 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ℕ0 ∈
V) |
| 168 | | rhmghm 18725 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈
((Poly1‘ℂfld) RingHom (ℂfld
↑s ℂ)) → 𝐸 ∈
((Poly1‘ℂfld) GrpHom (ℂfld
↑s ℂ))) |
| 169 | 56, 168 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝐸 ∈
((Poly1‘ℂfld) GrpHom (ℂfld
↑s ℂ)) |
| 170 | | ghmmhm 17670 |
. . . . . . . . . . 11
⊢ (𝐸 ∈
((Poly1‘ℂfld) GrpHom (ℂfld
↑s ℂ)) → 𝐸 ∈
((Poly1‘ℂfld) MndHom (ℂfld
↑s ℂ))) |
| 171 | 169, 170 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → 𝐸 ∈
((Poly1‘ℂfld) MndHom (ℂfld
↑s ℂ))) |
| 172 | 54 | ply1lmod 19622 |
. . . . . . . . . . . . 13
⊢
(ℂfld ∈ Ring →
(Poly1‘ℂfld) ∈ LMod) |
| 173 | 9, 172 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) →
(Poly1‘ℂfld) ∈ LMod) |
| 174 | 12 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆
ℂ) |
| 175 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 176 | 155, 59, 58, 175 | coe1f 19581 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ 𝐴 → (coe1‘𝑎):ℕ0⟶(Base‘𝑅)) |
| 177 | 57 | subrgbas 18789 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 = (Base‘𝑅)) |
| 178 | 177 | feq3d 6032 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈
(SubRing‘ℂfld) → ((coe1‘𝑎):ℕ0⟶𝑆 ↔
(coe1‘𝑎):ℕ0⟶(Base‘𝑅))) |
| 179 | 176, 178 | syl5ibr 236 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (𝑎 ∈ 𝐴 → (coe1‘𝑎):ℕ0⟶𝑆)) |
| 180 | 179 | imp 445 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (coe1‘𝑎):ℕ0⟶𝑆) |
| 181 | 180 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑎)‘𝑘) ∈ 𝑆) |
| 182 | 174, 181 | sseldd 3604 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑎)‘𝑘) ∈ ℂ) |
| 183 | 111 | ringmgp 18553 |
. . . . . . . . . . . . . 14
⊢
((Poly1‘ℂfld) ∈ Ring →
(mulGrp‘(Poly1‘ℂfld)) ∈
Mnd) |
| 184 | 161, 183 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) →
(mulGrp‘(Poly1‘ℂfld)) ∈
Mnd) |
| 185 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 186 | 115, 54, 94 | vr1cl 19587 |
. . . . . . . . . . . . . 14
⊢
(ℂfld ∈ Ring →
(var1‘ℂfld) ∈
(Base‘(Poly1‘ℂfld))) |
| 187 | 9, 186 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) →
(var1‘ℂfld) ∈
(Base‘(Poly1‘ℂfld))) |
| 188 | 111, 94 | mgpbas 18495 |
. . . . . . . . . . . . . 14
⊢
(Base‘(Poly1‘ℂfld)) =
(Base‘(mulGrp‘(Poly1‘ℂfld))) |
| 189 | 188, 117 | mulgnn0cl 17558 |
. . . . . . . . . . . . 13
⊢
(((mulGrp‘(Poly1‘ℂfld)) ∈
Mnd ∧ 𝑘 ∈
ℕ0 ∧ (var1‘ℂfld) ∈
(Base‘(Poly1‘ℂfld))) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ (Base‘(Poly1‘ℂfld))) |
| 190 | 184, 185,
187, 189 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ (Base‘(Poly1‘ℂfld))) |
| 191 | 54 | ply1sca 19623 |
. . . . . . . . . . . . . 14
⊢
(ℂfld ∈ Ring → ℂfld =
(Scalar‘(Poly1‘ℂfld))) |
| 192 | 9, 191 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
ℂfld =
(Scalar‘(Poly1‘ℂfld)) |
| 193 | 94, 192, 154, 4 | lmodvscl 18880 |
. . . . . . . . . . . 12
⊢
(((Poly1‘ℂfld) ∈ LMod ∧
((coe1‘𝑎)‘𝑘) ∈ ℂ ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ (Base‘(Poly1‘ℂfld))) → (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
∈ (Base‘(Poly1‘ℂfld))) |
| 194 | 173, 182,
190, 193 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
∈ (Base‘(Poly1‘ℂfld))) |
| 195 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
= (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) |
| 196 | 194, 195 | fmptd 6385 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℕ0⟶(Base‘(Poly1‘ℂfld))) |
| 197 | 166 | mptex 6486 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∈ V |
| 198 | | funmpt 5926 |
. . . . . . . . . . . . 13
⊢ Fun
(𝑘 ∈
ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) |
| 199 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢
(0g‘(Poly1‘ℂfld))
∈ V |
| 200 | 197, 198,
199 | 3pm3.2i 1239 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∧ (0g‘(Poly1‘ℂfld)) ∈ V) |
| 201 | 200 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∧ (0g‘(Poly1‘ℂfld)) ∈ V)) |
| 202 | 155, 94, 54, 17 | coe1sfi 19583 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈
(Base‘(Poly1‘ℂfld)) →
(coe1‘𝑎)
finSupp 0) |
| 203 | 153, 202 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (coe1‘𝑎) finSupp 0) |
| 204 | 203 | fsuppimpd 8282 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((coe1‘𝑎) supp 0) ∈
Fin) |
| 205 | 180 | feqmptd 6249 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (coe1‘𝑎) = (𝑘 ∈ ℕ0 ↦
((coe1‘𝑎)‘𝑘))) |
| 206 | 205 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((coe1‘𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦
((coe1‘𝑎)‘𝑘)) supp 0)) |
| 207 | | eqimss2 3658 |
. . . . . . . . . . . . 13
⊢
(((coe1‘𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦
((coe1‘𝑎)‘𝑘)) supp 0) → ((𝑘 ∈ ℕ0 ↦
((coe1‘𝑎)‘𝑘)) supp 0) ⊆
((coe1‘𝑎)
supp 0)) |
| 208 | 206, 207 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((𝑘 ∈ ℕ0 ↦
((coe1‘𝑎)‘𝑘)) supp 0) ⊆
((coe1‘𝑎)
supp 0)) |
| 209 | 9, 172 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) →
(Poly1‘ℂfld) ∈ LMod) |
| 210 | 94, 192, 154, 17, 159 | lmod0vs 18896 |
. . . . . . . . . . . . 13
⊢
(((Poly1‘ℂfld) ∈ LMod ∧ 𝑥 ∈
(Base‘(Poly1‘ℂfld))) → (0(
·𝑠
‘(Poly1‘ℂfld))𝑥) =
(0g‘(Poly1‘ℂfld))) |
| 211 | 209, 210 | sylan 488 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 ∈
(Base‘(Poly1‘ℂfld))) → (0(
·𝑠
‘(Poly1‘ℂfld))𝑥) =
(0g‘(Poly1‘ℂfld))) |
| 212 | | c0ex 10034 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 213 | 212 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → 0 ∈ V) |
| 214 | 208, 211,
181, 190, 213 | suppssov1 7327 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1‘𝑎)
supp 0)) |
| 215 | | suppssfifsupp 8290 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∧ (0g‘(Poly1‘ℂfld)) ∈ V) ∧ (((coe1‘𝑎) supp 0) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)(
·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1‘𝑎)
supp 0))) → (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
finSupp (0g‘(Poly1‘ℂfld))) |
| 216 | 201, 204,
214, 215 | syl12anc 1324 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
finSupp (0g‘(Poly1‘ℂfld))) |
| 217 | 94, 159, 163, 165, 167, 171, 196, 216 | gsummhm 18338 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((ℂfld
↑s ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
= (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))) |
| 218 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
= (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) |
| 219 | 96 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂfld
↑s ℂ))) |
| 220 | 219 | feqmptd 6249 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → 𝐸 = (𝑥 ∈
(Base‘(Poly1‘ℂfld)) ↦ (𝐸‘𝑥))) |
| 221 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 =
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
→ (𝐸‘𝑥) = (𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) |
| 222 | 194, 218,
220, 221 | fmptco 6396 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))
= (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) |
| 223 | 9 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) →
ℂfld ∈ Ring) |
| 224 | 6 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → ℂ
∈ V) |
| 225 | 96 | ffvelrni 6358 |
. . . . . . . . . . . . . . . 16
⊢
((((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
∈ (Base‘(Poly1‘ℂfld)) → (𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∈ (Base‘(ℂfld ↑s ℂ))) |
| 226 | 194, 225 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
∈ (Base‘(ℂfld ↑s ℂ))) |
| 227 | 3, 4, 67, 223, 224, 226 | pwselbas 16149 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℂ⟶ℂ) |
| 228 | 227 | feqmptd 6249 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
= (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧))) |
| 229 | 52 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) →
ℂfld ∈ CRing) |
| 230 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈
ℂ) |
| 231 | 53, 115, 4, 54, 94, 229, 230 | evl1vard 19701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) →
((var1‘ℂfld) ∈
(Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧)) |
| 232 | 185 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈
ℕ0) |
| 233 | 53, 54, 4, 94, 229, 230, 231, 117, 128, 232 | evl1expd 19709 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧))) |
| 234 | 230, 232,
132 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧↑𝑘)) |
| 235 | 234 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧) ↔ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧↑𝑘))) |
| 236 | 235 | anbi2d 740 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)) ↔ ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈
(Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧↑𝑘)))) |
| 237 | 233, 236 | mpbid 222 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))
∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧↑𝑘))) |
| 238 | 182 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) →
((coe1‘𝑎)‘𝑘) ∈ ℂ) |
| 239 | 53, 54, 4, 94, 229, 230, 237, 238, 154, 81 | evl1vsd 19708 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) →
((((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))
∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 240 | 239 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) |
| 241 | 240 | mpteq2dva 4744 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)) = (𝑧 ∈ ℂ ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 242 | 228, 241 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
= (𝑧 ∈ ℂ ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 243 | 242 | mpteq2dva 4744 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))
= (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))))) |
| 244 | 222, 243 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))
= (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))))) |
| 245 | 244 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((ℂfld
↑s ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘)( ·𝑠
‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
= ((ℂfld ↑s ℂ) Σg (𝑘 ∈
ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))))) |
| 246 | 158, 217,
245 | 3eqtr2d 2662 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝐸‘𝑎) = ((ℂfld
↑s ℂ) Σg (𝑘 ∈ ℕ0
↦ (𝑧 ∈ ℂ
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))))) |
| 247 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ℂ ∈ V) |
| 248 | 9, 10 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ℂfld ∈
CMnd) |
| 249 | 182 | adantlr 751 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑎)‘𝑘) ∈ ℂ) |
| 250 | 33 | adantll 750 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
| 251 | 249, 250 | mulcld 10060 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 252 | 251 | anasss 679 |
. . . . . . . . 9
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) →
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 253 | 166 | mptex 6486 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
↦ (𝑧 ∈ ℂ
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) ∈ V |
| 254 | | funmpt 5926 |
. . . . . . . . . . . 12
⊢ Fun
(𝑘 ∈
ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 255 | 253, 254,
39 | 3pm3.2i 1239 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ0
↦ (𝑧 ∈ ℂ
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) ∧
(0g‘(ℂfld ↑s ℂ))
∈ V) |
| 256 | 255 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) ∧
(0g‘(ℂfld ↑s ℂ))
∈ V)) |
| 257 | | fzfid 12772 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ∈ Fin) |
| 258 | | eldifn 3733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (ℕ0
∖ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) → ¬ 𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) |
| 259 | 258 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → ¬ 𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) |
| 260 | 153 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → 𝑎 ∈
(Base‘(Poly1‘ℂfld))) |
| 261 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (ℕ0
∖ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) → 𝑘 ∈ ℕ0) |
| 262 | 261 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℕ0) |
| 263 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (
deg1 ‘ℂfld) = ( deg1
‘ℂfld) |
| 264 | 263, 54, 94, 17, 155 | deg1ge 23858 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ∈
(Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0
∧ ((coe1‘𝑎)‘𝑘) ≠ 0) → 𝑘 ≤ (( deg1
‘ℂfld)‘𝑎)) |
| 265 | 264 | 3expia 1267 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈
(Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0)
→ (((coe1‘𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ (( deg1
‘ℂfld)‘𝑎))) |
| 266 | 260, 262,
265 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) →
(((coe1‘𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ (( deg1
‘ℂfld)‘𝑎))) |
| 267 | | 0xr 10086 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℝ* |
| 268 | 263, 54, 94 | deg1xrcl 23842 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 ∈
(Base‘(Poly1‘ℂfld)) → ((
deg1 ‘ℂfld)‘𝑎) ∈
ℝ*) |
| 269 | 153, 268 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (( deg1
‘ℂfld)‘𝑎) ∈
ℝ*) |
| 270 | 269 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (( deg1
‘ℂfld)‘𝑎) ∈
ℝ*) |
| 271 | | xrmax2 12007 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0
∈ ℝ* ∧ (( deg1
‘ℂfld)‘𝑎) ∈ ℝ*) → ((
deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) |
| 272 | 267, 270,
271 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (( deg1
‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) |
| 273 | 262 | nn0red 11352 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ) |
| 274 | 273 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ*) |
| 275 | | ifcl 4130 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((
deg1 ‘ℂfld)‘𝑎) ∈ ℝ* ∧ 0 ∈
ℝ*) → if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈
ℝ*) |
| 276 | 270, 267,
275 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈
ℝ*) |
| 277 | | xrletr 11989 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℝ*
∧ (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ* ∧ if(0 ≤
(( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈ ℝ*) →
((𝑘 ≤ (( deg1
‘ℂfld)‘𝑎) ∧ (( deg1
‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) |
| 278 | 274, 270,
276, 277 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → ((𝑘 ≤ (( deg1
‘ℂfld)‘𝑎) ∧ (( deg1
‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) |
| 279 | 272, 278 | mpan2d 710 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (𝑘 ≤ (( deg1
‘ℂfld)‘𝑎) → 𝑘 ≤ if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) |
| 280 | 266, 279 | syld 47 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) →
(((coe1‘𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) |
| 281 | 280, 262 | jctild 566 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) →
(((coe1‘𝑎)‘𝑘) ≠ 0 → (𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) |
| 282 | 263, 54, 94 | deg1cl 23843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 ∈
(Base‘(Poly1‘ℂfld)) → ((
deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪
{-∞})) |
| 283 | 153, 282 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (( deg1
‘ℂfld)‘𝑎) ∈ (ℕ0 ∪
{-∞})) |
| 284 | | elun 3753 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪
{-∞}) ↔ ((( deg1
‘ℂfld)‘𝑎) ∈ ℕ0 ∨ ((
deg1 ‘ℂfld)‘𝑎) ∈ {-∞})) |
| 285 | 283, 284 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((( deg1
‘ℂfld)‘𝑎) ∈ ℕ0 ∨ ((
deg1 ‘ℂfld)‘𝑎) ∈ {-∞})) |
| 286 | | nn0ge0 11318 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → 0 ≤ ((
deg1 ‘ℂfld)‘𝑎)) |
| 287 | 286 | iftrued 4094 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤
(( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) = (( deg1
‘ℂfld)‘𝑎)) |
| 288 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → ((
deg1 ‘ℂfld)‘𝑎) ∈
ℕ0) |
| 289 | 287, 288 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤
(( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈
ℕ0) |
| 290 | | mnflt0 11959 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ -∞
< 0 |
| 291 | | mnfxr 10096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ -∞
∈ ℝ* |
| 292 | | xrltnle 10105 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((-∞ ∈ ℝ* ∧ 0 ∈
ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤
-∞)) |
| 293 | 291, 267,
292 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (-∞
< 0 ↔ ¬ 0 ≤ -∞) |
| 294 | 290, 293 | mpbi 220 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ¬ 0
≤ -∞ |
| 295 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → (( deg1
‘ℂfld)‘𝑎) = -∞) |
| 296 | 295 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → (0 ≤ ((
deg1 ‘ℂfld)‘𝑎) ↔ 0 ≤ -∞)) |
| 297 | 294, 296 | mtbiri 317 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → ¬ 0 ≤ ((
deg1 ‘ℂfld)‘𝑎)) |
| 298 | 297 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) = 0) |
| 299 | | 0nn0 11307 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
ℕ0 |
| 300 | 298, 299 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((
deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈
ℕ0) |
| 301 | 289, 300 | jaoi 394 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((
deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ ((
deg1 ‘ℂfld)‘𝑎) ∈ {-∞}) → if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈
ℕ0) |
| 302 | 285, 301 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈
ℕ0) |
| 303 | 302 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈
ℕ0) |
| 304 | | fznn0 12432 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (if(0
≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈ ℕ0 →
(𝑘 ∈ (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) |
| 305 | 303, 304 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) |
| 306 | 281, 305 | sylibrd 249 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) →
(((coe1‘𝑎)‘𝑘) ≠ 0 → 𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) |
| 307 | 306 | necon1bd 2812 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (¬ 𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) → ((coe1‘𝑎)‘𝑘) = 0)) |
| 308 | 259, 307 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → ((coe1‘𝑎)‘𝑘) = 0) |
| 309 | 308 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) →
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 310 | 261, 250 | sylan2 491 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (𝑧↑𝑘) ∈ ℂ) |
| 311 | 310 | mul02d 10234 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (0 · (𝑧↑𝑘)) = 0) |
| 312 | 309, 311 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) →
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)) = 0) |
| 313 | 312 | an32s 846 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) ∧ 𝑧 ∈ ℂ) →
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)) = 0) |
| 314 | 313 | mpteq2dva 4744 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ 0)) |
| 315 | | fconstmpt 5163 |
. . . . . . . . . . . . 13
⊢ (ℂ
× {0}) = (𝑧 ∈
ℂ ↦ 0) |
| 316 | | ringmnd 18556 |
. . . . . . . . . . . . . . 15
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
| 317 | 9, 316 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
ℂfld ∈ Mnd |
| 318 | 3, 17 | pws0g 17326 |
. . . . . . . . . . . . . 14
⊢
((ℂfld ∈ Mnd ∧ ℂ ∈ V) →
(ℂ × {0}) = (0g‘(ℂfld
↑s ℂ))) |
| 319 | 317, 6, 318 | mp2an 708 |
. . . . . . . . . . . . 13
⊢ (ℂ
× {0}) = (0g‘(ℂfld
↑s ℂ)) |
| 320 | 315, 319 | eqtr3i 2646 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℂ ↦ 0) =
(0g‘(ℂfld ↑s
ℂ)) |
| 321 | 314, 320 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑘 ∈ (ℕ0 ∖
(0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) =
(0g‘(ℂfld ↑s
ℂ))) |
| 322 | 321, 167 | suppss2 7329 |
. . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) supp
(0g‘(ℂfld ↑s
ℂ))) ⊆ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) |
| 323 | | suppssfifsupp 8290 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ℕ0
↦ (𝑧 ∈ ℂ
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) ∧
(0g‘(ℂfld ↑s ℂ))
∈ V) ∧ ((0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) supp
(0g‘(ℂfld ↑s
ℂ))) ⊆ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) finSupp
(0g‘(ℂfld ↑s
ℂ))) |
| 324 | 256, 257,
322, 323 | syl12anc 1324 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) finSupp
(0g‘(ℂfld ↑s
ℂ))) |
| 325 | 3, 4, 5, 247, 167, 248, 252, 324 | pwsgsum 18378 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((ℂfld
↑s ℂ) Σg (𝑘 ∈ ℕ0
↦ (𝑧 ∈ ℂ
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))))) = (𝑧 ∈ ℂ ↦
(ℂfld Σg (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))))) |
| 326 | | fz0ssnn0 12435 |
. . . . . . . . . . . 12
⊢ (0...if(0
≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ⊆
ℕ0 |
| 327 | | resmpt 5449 |
. . . . . . . . . . . 12
⊢
((0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ⊆ ℕ0 →
((𝑘 ∈
ℕ0 ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ↾ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 328 | 326, 327 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ↾ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) |
| 329 | 328 | oveq2i 6661 |
. . . . . . . . . 10
⊢
(ℂfld Σg ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ↾ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) = (ℂfld
Σg (𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 330 | 9, 10 | mp1i 13 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) → ℂfld
∈ CMnd) |
| 331 | 166 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) → ℕ0
∈ V) |
| 332 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) = (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) |
| 333 | 251, 332 | fmptd 6385 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))):ℕ0⟶ℂ) |
| 334 | 312, 331 | suppss2 7329 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) supp 0) ⊆ (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) |
| 335 | 166 | mptex 6486 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∈ V |
| 336 | | funmpt 5926 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑘 ∈
ℕ0 ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) |
| 337 | 335, 336,
212 | 3pm3.2i 1239 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∧ 0 ∈ V) |
| 338 | 337 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∧ 0 ∈ V)) |
| 339 | | fzfid 12772 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) → (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ∈ Fin) |
| 340 | | suppssfifsupp 8290 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ℕ0
↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∧ 0 ∈ V) ∧ ((0...if(0 ≤
(( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) supp 0) ⊆ (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) finSupp 0) |
| 341 | 338, 339,
334, 340 | syl12anc 1324 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) finSupp 0) |
| 342 | 4, 17, 330, 331, 333, 334, 341 | gsumres 18314 |
. . . . . . . . . 10
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) →
(ℂfld Σg ((𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ↾ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)))) = (ℂfld
Σg (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))))) |
| 343 | | elfznn0 12433 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) → 𝑘 ∈ ℕ0) |
| 344 | 343, 251 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))) → (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 345 | 339, 344 | gsumfsum 19813 |
. . . . . . . . . 10
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) →
(ℂfld Σg (𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0)) ↦ (((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) |
| 346 | 329, 342,
345 | 3eqtr3a 2680 |
. . . . . . . . 9
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) ∧ 𝑧 ∈ ℂ) →
(ℂfld Σg (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ (( deg1
‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) |
| 347 | 346 | mpteq2dva 4744 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝑧 ∈ ℂ ↦
(ℂfld Σg (𝑘 ∈ ℕ0 ↦
(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 348 | 246, 325,
347 | 3eqtrd 2660 |
. . . . . . 7
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝐸‘𝑎) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘)))) |
| 349 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → 𝑆 ⊆ ℂ) |
| 350 | | elplyr 23957 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ if(0 ≤
(( deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0) ∈ ℕ0 ∧
(coe1‘𝑎):ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |
| 351 | 349, 302,
180, 350 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ ((
deg1 ‘ℂfld)‘𝑎), (( deg1
‘ℂfld)‘𝑎), 0))(((coe1‘𝑎)‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |
| 352 | 348, 351 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → (𝐸‘𝑎) ∈ (Poly‘𝑆)) |
| 353 | | eleq1 2689 |
. . . . . 6
⊢ ((𝐸‘𝑎) = 𝑓 → ((𝐸‘𝑎) ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (Poly‘𝑆))) |
| 354 | 352, 353 | syl5ibcom 235 |
. . . . 5
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝑎 ∈ 𝐴) → ((𝐸‘𝑎) = 𝑓 → 𝑓 ∈ (Poly‘𝑆))) |
| 355 | 354 | rexlimdva 3031 |
. . . 4
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (∃𝑎 ∈ 𝐴 (𝐸‘𝑎) = 𝑓 → 𝑓 ∈ (Poly‘𝑆))) |
| 356 | 152, 355 | syl5 34 |
. . 3
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (𝑓 ∈ (𝐸 “ 𝐴) → 𝑓 ∈ (Poly‘𝑆))) |
| 357 | 148, 356 | impbid 202 |
. 2
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (𝐸 “ 𝐴))) |
| 358 | 357 | eqrdv 2620 |
1
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸 “ 𝐴)) |