| Step | Hyp | Ref
| Expression |
| 1 | | m2detleib.d |
. . . 4
⊢ 𝐷 = (𝑁 maDet 𝑅) |
| 2 | | m2detleib.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 3 | | m2detleib.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
| 4 | | eqid 2622 |
. . . 4
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) |
| 5 | | eqid 2622 |
. . . 4
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 6 | | eqid 2622 |
. . . 4
⊢
(pmSgn‘𝑁) =
(pmSgn‘𝑁) |
| 7 | | m2detleib.t |
. . . 4
⊢ · =
(.r‘𝑅) |
| 8 | | eqid 2622 |
. . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mdetleib1 20397 |
. . 3
⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑘 ∈
(Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))))))) |
| 10 | 9 | adantl 482 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝑅 Σg (𝑘 ∈
(Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))))))) |
| 11 | | eqid 2622 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 12 | | eqid 2622 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 13 | | ringcmn 18581 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 14 | 13 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ CMnd) |
| 15 | | m2detleib.n |
. . . . . 6
⊢ 𝑁 = {1, 2} |
| 16 | | prfi 8235 |
. . . . . 6
⊢ {1, 2}
∈ Fin |
| 17 | 15, 16 | eqeltri 2697 |
. . . . 5
⊢ 𝑁 ∈ Fin |
| 18 | | eqid 2622 |
. . . . . 6
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
| 19 | 18, 4 | symgbasfi 17806 |
. . . . 5
⊢ (𝑁 ∈ Fin →
(Base‘(SymGrp‘𝑁)) ∈ Fin) |
| 20 | 17, 19 | ax-mp 5 |
. . . 4
⊢
(Base‘(SymGrp‘𝑁)) ∈ Fin |
| 21 | 20 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (Base‘(SymGrp‘𝑁)) ∈ Fin) |
| 22 | | simpl 473 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 23 | 22 | adantr 481 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring) |
| 24 | 4, 6, 5 | zrhpsgnelbas 19940 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑘 ∈
(Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅)) |
| 25 | 17, 24 | mp3an2 1412 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑘 ∈
(Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅)) |
| 26 | 25 | adantlr 751 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) →
((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅)) |
| 27 | | simpr 477 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑘 ∈ (Base‘(SymGrp‘𝑁))) |
| 28 | | simpr 477 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
| 29 | 28 | adantr 481 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑀 ∈ 𝐵) |
| 30 | 15, 4, 2, 3, 8 | m2detleiblem2 20434 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑘 ∈
(Base‘(SymGrp‘𝑁)) ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| 31 | 23, 27, 29, 30 | syl3anc 1326 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg
(𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| 32 | 11, 7 | ringcl 18561 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| 33 | 23, 26, 31, 32 | syl3anc 1326 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) →
(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| 34 | | opex 4932 |
. . . . . . . 8
⊢ 〈1,
1〉 ∈ V |
| 35 | | opex 4932 |
. . . . . . . 8
⊢ 〈2,
2〉 ∈ V |
| 36 | 34, 35 | pm3.2i 471 |
. . . . . . 7
⊢ (〈1,
1〉 ∈ V ∧ 〈2, 2〉 ∈ V) |
| 37 | | opex 4932 |
. . . . . . . 8
⊢ 〈1,
2〉 ∈ V |
| 38 | | opex 4932 |
. . . . . . . 8
⊢ 〈2,
1〉 ∈ V |
| 39 | 37, 38 | pm3.2i 471 |
. . . . . . 7
⊢ (〈1,
2〉 ∈ V ∧ 〈2, 1〉 ∈ V) |
| 40 | 36, 39 | pm3.2i 471 |
. . . . . 6
⊢
((〈1, 1〉 ∈ V ∧ 〈2, 2〉 ∈ V) ∧
(〈1, 2〉 ∈ V ∧ 〈2, 1〉 ∈ V)) |
| 41 | | 1ne2 11240 |
. . . . . . . . . 10
⊢ 1 ≠
2 |
| 42 | 41 | olci 406 |
. . . . . . . . 9
⊢ (1 ≠ 1
∨ 1 ≠ 2) |
| 43 | | 1ex 10035 |
. . . . . . . . . 10
⊢ 1 ∈
V |
| 44 | 43, 43 | opthne 4951 |
. . . . . . . . 9
⊢ (〈1,
1〉 ≠ 〈1, 2〉 ↔ (1 ≠ 1 ∨ 1 ≠ 2)) |
| 45 | 42, 44 | mpbir 221 |
. . . . . . . 8
⊢ 〈1,
1〉 ≠ 〈1, 2〉 |
| 46 | 41 | orci 405 |
. . . . . . . . 9
⊢ (1 ≠ 2
∨ 1 ≠ 1) |
| 47 | 43, 43 | opthne 4951 |
. . . . . . . . 9
⊢ (〈1,
1〉 ≠ 〈2, 1〉 ↔ (1 ≠ 2 ∨ 1 ≠ 1)) |
| 48 | 46, 47 | mpbir 221 |
. . . . . . . 8
⊢ 〈1,
1〉 ≠ 〈2, 1〉 |
| 49 | 45, 48 | pm3.2i 471 |
. . . . . . 7
⊢ (〈1,
1〉 ≠ 〈1, 2〉 ∧ 〈1, 1〉 ≠ 〈2,
1〉) |
| 50 | 49 | orci 405 |
. . . . . 6
⊢
((〈1, 1〉 ≠ 〈1, 2〉 ∧ 〈1, 1〉 ≠
〈2, 1〉) ∨ (〈2, 2〉 ≠ 〈1, 2〉 ∧ 〈2,
2〉 ≠ 〈2, 1〉)) |
| 51 | 40, 50 | pm3.2i 471 |
. . . . 5
⊢
(((〈1, 1〉 ∈ V ∧ 〈2, 2〉 ∈ V) ∧
(〈1, 2〉 ∈ V ∧ 〈2, 1〉 ∈ V)) ∧ ((〈1,
1〉 ≠ 〈1, 2〉 ∧ 〈1, 1〉 ≠ 〈2, 1〉)
∨ (〈2, 2〉 ≠ 〈1, 2〉 ∧ 〈2, 2〉 ≠
〈2, 1〉))) |
| 52 | 51 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((〈1, 1〉 ∈ V ∧
〈2, 2〉 ∈ V) ∧ (〈1, 2〉 ∈ V ∧ 〈2,
1〉 ∈ V)) ∧ ((〈1, 1〉 ≠ 〈1, 2〉 ∧
〈1, 1〉 ≠ 〈2, 1〉) ∨ (〈2, 2〉 ≠ 〈1,
2〉 ∧ 〈2, 2〉 ≠ 〈2, 1〉)))) |
| 53 | | prneimg 4388 |
. . . . 5
⊢
(((〈1, 1〉 ∈ V ∧ 〈2, 2〉 ∈ V) ∧
(〈1, 2〉 ∈ V ∧ 〈2, 1〉 ∈ V)) → (((〈1,
1〉 ≠ 〈1, 2〉 ∧ 〈1, 1〉 ≠ 〈2, 1〉)
∨ (〈2, 2〉 ≠ 〈1, 2〉 ∧ 〈2, 2〉 ≠
〈2, 1〉)) → {〈1, 1〉, 〈2, 2〉} ≠ {〈1,
2〉, 〈2, 1〉})) |
| 54 | 53 | imp 445 |
. . . 4
⊢
((((〈1, 1〉 ∈ V ∧ 〈2, 2〉 ∈ V) ∧
(〈1, 2〉 ∈ V ∧ 〈2, 1〉 ∈ V)) ∧ ((〈1,
1〉 ≠ 〈1, 2〉 ∧ 〈1, 1〉 ≠ 〈2, 1〉)
∨ (〈2, 2〉 ≠ 〈1, 2〉 ∧ 〈2, 2〉 ≠
〈2, 1〉))) → {〈1, 1〉, 〈2, 2〉} ≠ {〈1,
2〉, 〈2, 1〉}) |
| 55 | | disjsn2 4247 |
. . . 4
⊢
({〈1, 1〉, 〈2, 2〉} ≠ {〈1, 2〉, 〈2,
1〉} → ({{〈1, 1〉, 〈2, 2〉}} ∩ {{〈1,
2〉, 〈2, 1〉}}) = ∅) |
| 56 | 52, 54, 55 | 3syl 18 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ({{〈1, 1〉, 〈2,
2〉}} ∩ {{〈1, 2〉, 〈2, 1〉}}) =
∅) |
| 57 | | 2nn 11185 |
. . . . . 6
⊢ 2 ∈
ℕ |
| 58 | 18, 4, 15 | symg2bas 17818 |
. . . . . 6
⊢ ((1
∈ V ∧ 2 ∈ ℕ) → (Base‘(SymGrp‘𝑁)) = {{〈1, 1〉,
〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 59 | 43, 57, 58 | mp2an 708 |
. . . . 5
⊢
(Base‘(SymGrp‘𝑁)) = {{〈1, 1〉, 〈2, 2〉},
{〈1, 2〉, 〈2, 1〉}} |
| 60 | | df-pr 4180 |
. . . . 5
⊢
{{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2,
1〉}} = ({{〈1, 1〉, 〈2, 2〉}} ∪ {{〈1, 2〉,
〈2, 1〉}}) |
| 61 | 59, 60 | eqtri 2644 |
. . . 4
⊢
(Base‘(SymGrp‘𝑁)) = ({{〈1, 1〉, 〈2, 2〉}}
∪ {{〈1, 2〉, 〈2, 1〉}}) |
| 62 | 61 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (Base‘(SymGrp‘𝑁)) = ({{〈1, 1〉,
〈2, 2〉}} ∪ {{〈1, 2〉, 〈2,
1〉}})) |
| 63 | 11, 12, 14, 21, 33, 56, 62 | gsummptfidmsplit 18330 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑅 Σg (𝑘 ∈
(Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))))) = ((𝑅 Σg (𝑘 ∈ {{〈1, 1〉,
〈2, 2〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))))))(+g‘𝑅)(𝑅 Σg (𝑘 ∈ {{〈1, 2〉,
〈2, 1〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))))))) |
| 64 | | ringmnd 18556 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 65 | 64 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Mnd) |
| 66 | | prex 4909 |
. . . . . 6
⊢ {〈1,
1〉, 〈2, 2〉} ∈ V |
| 67 | 66 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → {〈1, 1〉, 〈2,
2〉} ∈ V) |
| 68 | 66 | prid1 4297 |
. . . . . . . . 9
⊢ {〈1,
1〉, 〈2, 2〉} ∈ {{〈1, 1〉, 〈2, 2〉},
{〈1, 2〉, 〈2, 1〉}} |
| 69 | 68, 59 | eleqtrri 2700 |
. . . . . . . 8
⊢ {〈1,
1〉, 〈2, 2〉} ∈ (Base‘(SymGrp‘𝑁)) |
| 70 | 69 | a1i 11 |
. . . . . . 7
⊢ (𝑀 ∈ 𝐵 → {〈1, 1〉, 〈2, 2〉}
∈ (Base‘(SymGrp‘𝑁))) |
| 71 | 4, 6, 5 | zrhpsgnelbas 19940 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {〈1,
1〉, 〈2, 2〉} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ∈ (Base‘𝑅)) |
| 72 | 17, 71 | mp3an2 1412 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ {〈1,
1〉, 〈2, 2〉} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ∈ (Base‘𝑅)) |
| 73 | 70, 72 | sylan2 491 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ∈ (Base‘𝑅)) |
| 74 | 15, 4, 2, 3, 8 | m2detleiblem2 20434 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ {〈1,
1〉, 〈2, 2〉} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| 75 | 69, 74 | mp3an2 1412 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| 76 | 11, 7 | ringcl 18561 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉, 〈2,
2〉})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| 77 | 22, 73, 75, 76 | syl3anc 1326 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| 78 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = {〈1, 1〉, 〈2,
2〉} → ((pmSgn‘𝑁)‘𝑘) = ((pmSgn‘𝑁)‘{〈1, 1〉, 〈2,
2〉})) |
| 79 | 78 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑘 = {〈1, 1〉, 〈2,
2〉} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉, 〈2,
2〉}))) |
| 80 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑘 = {〈1, 1〉, 〈2,
2〉} → (𝑘‘𝑛) = ({〈1, 1〉, 〈2,
2〉}‘𝑛)) |
| 81 | 80 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑘 = {〈1, 1〉, 〈2,
2〉} → ((𝑘‘𝑛)𝑀𝑛) = (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛)) |
| 82 | 81 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑘 = {〈1, 1〉, 〈2,
2〉} → (𝑛 ∈
𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)) = (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))) |
| 83 | 82 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑘 = {〈1, 1〉, 〈2,
2〉} → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛)))) |
| 84 | 79, 83 | oveq12d 6668 |
. . . . . 6
⊢ (𝑘 = {〈1, 1〉, 〈2,
2〉} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉, 〈2,
2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))))) |
| 85 | 11, 84 | gsumsn 18354 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ {〈1,
1〉, 〈2, 2〉} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{〈1, 1〉,
〈2, 2〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))))) |
| 86 | 65, 67, 77, 85 | syl3anc 1326 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑅 Σg (𝑘 ∈ {{〈1, 1〉,
〈2, 2〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))))) |
| 87 | | prex 4909 |
. . . . . 6
⊢ {〈1,
2〉, 〈2, 1〉} ∈ V |
| 88 | 87 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → {〈1, 2〉, 〈2,
1〉} ∈ V) |
| 89 | 87 | prid2 4298 |
. . . . . . . . 9
⊢ {〈1,
2〉, 〈2, 1〉} ∈ {{〈1, 1〉, 〈2, 2〉},
{〈1, 2〉, 〈2, 1〉}} |
| 90 | 89, 59 | eleqtrri 2700 |
. . . . . . . 8
⊢ {〈1,
2〉, 〈2, 1〉} ∈ (Base‘(SymGrp‘𝑁)) |
| 91 | 90 | a1i 11 |
. . . . . . 7
⊢ (𝑀 ∈ 𝐵 → {〈1, 2〉, 〈2, 1〉}
∈ (Base‘(SymGrp‘𝑁))) |
| 92 | 4, 6, 5 | zrhpsgnelbas 19940 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {〈1,
2〉, 〈2, 1〉} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ∈ (Base‘𝑅)) |
| 93 | 17, 92 | mp3an2 1412 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ {〈1,
2〉, 〈2, 1〉} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ∈ (Base‘𝑅)) |
| 94 | 91, 93 | sylan2 491 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ∈ (Base‘𝑅)) |
| 95 | 15, 4, 2, 3, 8 | m2detleiblem2 20434 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ {〈1,
2〉, 〈2, 1〉} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| 96 | 90, 95 | mp3an2 1412 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| 97 | 11, 7 | ringcl 18561 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉, 〈2,
1〉})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| 98 | 22, 94, 96, 97 | syl3anc 1326 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| 99 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = {〈1, 2〉, 〈2,
1〉} → ((pmSgn‘𝑁)‘𝑘) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2,
1〉})) |
| 100 | 99 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑘 = {〈1, 2〉, 〈2,
1〉} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉, 〈2,
1〉}))) |
| 101 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑘 = {〈1, 2〉, 〈2,
1〉} → (𝑘‘𝑛) = ({〈1, 2〉, 〈2,
1〉}‘𝑛)) |
| 102 | 101 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑘 = {〈1, 2〉, 〈2,
1〉} → ((𝑘‘𝑛)𝑀𝑛) = (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛)) |
| 103 | 102 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑘 = {〈1, 2〉, 〈2,
1〉} → (𝑛 ∈
𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)) = (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))) |
| 104 | 103 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑘 = {〈1, 2〉, 〈2,
1〉} → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛)))) |
| 105 | 100, 104 | oveq12d 6668 |
. . . . . 6
⊢ (𝑘 = {〈1, 2〉, 〈2,
1〉} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉, 〈2,
1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))))) |
| 106 | 11, 105 | gsumsn 18354 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ {〈1,
2〉, 〈2, 1〉} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{〈1, 2〉,
〈2, 1〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))))) |
| 107 | 65, 88, 98, 106 | syl3anc 1326 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑅 Σg (𝑘 ∈ {{〈1, 2〉,
〈2, 1〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))))) |
| 108 | 86, 107 | oveq12d 6668 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑅 Σg (𝑘 ∈ {{〈1, 1〉,
〈2, 2〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))))))(+g‘𝑅)(𝑅 Σg (𝑘 ∈ {{〈1, 2〉,
〈2, 1〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))))))) = ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))))(+g‘𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉, 〈2,
1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛)))))) |
| 109 | | eqidd 2623 |
. . . . . . 7
⊢ (𝑀 ∈ 𝐵 → {〈1, 1〉, 〈2, 2〉}
= {〈1, 1〉, 〈2, 2〉}) |
| 110 | | eqid 2622 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 111 | 15, 4, 5, 6, 110 | m2detleiblem5 20431 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ {〈1,
1〉, 〈2, 2〉} = {〈1, 1〉, 〈2, 2〉}) →
((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉, 〈2,
2〉})) = (1r‘𝑅)) |
| 112 | 109, 111 | sylan2 491 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) = (1r‘𝑅)) |
| 113 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → {〈1, 1〉, 〈2,
2〉} = {〈1, 1〉, 〈2, 2〉}) |
| 114 | 8, 7 | mgpplusg 18493 |
. . . . . . . 8
⊢ · =
(+g‘(mulGrp‘𝑅)) |
| 115 | 15, 4, 2, 3, 8, 114 | m2detleiblem3 20435 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ {〈1,
1〉, 〈2, 2〉} = {〈1, 1〉, 〈2, 2〉} ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2))) |
| 116 | 22, 113, 28, 115 | syl3anc 1326 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2))) |
| 117 | 112, 116 | oveq12d 6668 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛)))) = ((1r‘𝑅) · ((1𝑀1) · (2𝑀2)))) |
| 118 | 43 | prid1 4297 |
. . . . . . . . . 10
⊢ 1 ∈
{1, 2} |
| 119 | 118, 15 | eleqtrri 2700 |
. . . . . . . . 9
⊢ 1 ∈
𝑁 |
| 120 | 119 | a1i 11 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 1 ∈ 𝑁) |
| 121 | 3 | eleq2i 2693 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
| 122 | 121 | biimpi 206 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
| 123 | 122 | adantl 482 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐴)) |
| 124 | 2, 11 | matecl 20231 |
. . . . . . . 8
⊢ ((1
∈ 𝑁 ∧ 1 ∈
𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (1𝑀1) ∈ (Base‘𝑅)) |
| 125 | 120, 120,
123, 124 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (1𝑀1) ∈ (Base‘𝑅)) |
| 126 | | prid2g 4296 |
. . . . . . . . . . 11
⊢ (2 ∈
ℕ → 2 ∈ {1, 2}) |
| 127 | 57, 126 | ax-mp 5 |
. . . . . . . . . 10
⊢ 2 ∈
{1, 2} |
| 128 | 127, 15 | eleqtrri 2700 |
. . . . . . . . 9
⊢ 2 ∈
𝑁 |
| 129 | 128 | a1i 11 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 2 ∈ 𝑁) |
| 130 | 2, 11 | matecl 20231 |
. . . . . . . 8
⊢ ((2
∈ 𝑁 ∧ 2 ∈
𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (2𝑀2) ∈ (Base‘𝑅)) |
| 131 | 129, 129,
123, 130 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (2𝑀2) ∈ (Base‘𝑅)) |
| 132 | 11, 7 | ringcl 18561 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (1𝑀1) ∈ (Base‘𝑅) ∧ (2𝑀2) ∈ (Base‘𝑅)) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅)) |
| 133 | 22, 125, 131, 132 | syl3anc 1326 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅)) |
| 134 | 11, 7, 110 | ringlidm 18571 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅)) → ((1r‘𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2))) |
| 135 | 133, 134 | syldan 487 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((1r‘𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2))) |
| 136 | 117, 135 | eqtrd 2656 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛)))) = ((1𝑀1) · (2𝑀2))) |
| 137 | | eqidd 2623 |
. . . . . 6
⊢ (𝑀 ∈ 𝐵 → {〈1, 2〉, 〈2, 1〉}
= {〈1, 2〉, 〈2, 1〉}) |
| 138 | | eqid 2622 |
. . . . . . 7
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 139 | 15, 4, 5, 6, 110, 138 | m2detleiblem6 20432 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ {〈1,
2〉, 〈2, 1〉} = {〈1, 2〉, 〈2, 1〉}) →
((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉, 〈2,
1〉})) = ((invg‘𝑅)‘(1r‘𝑅))) |
| 140 | 137, 139 | sylan2 491 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) = ((invg‘𝑅)‘(1r‘𝑅))) |
| 141 | | eqidd 2623 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → {〈1, 2〉, 〈2,
1〉} = {〈1, 2〉, 〈2, 1〉}) |
| 142 | 15, 4, 2, 3, 8, 114 | m2detleiblem4 20436 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ {〈1,
2〉, 〈2, 1〉} = {〈1, 2〉, 〈2, 1〉} ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2))) |
| 143 | 22, 141, 28, 142 | syl3anc 1326 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2))) |
| 144 | 140, 143 | oveq12d 6668 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉,
〈2, 1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛)))) = (((invg‘𝑅)‘(1r‘𝑅)) · ((2𝑀1) · (1𝑀2)))) |
| 145 | 136, 144 | oveq12d 6668 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 1〉,
〈2, 2〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 1〉, 〈2,
2〉}‘𝑛)𝑀𝑛))))(+g‘𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈1, 2〉, 〈2,
1〉})) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ (({〈1, 2〉, 〈2,
1〉}‘𝑛)𝑀𝑛))))) = (((1𝑀1) · (2𝑀2))(+g‘𝑅)(((invg‘𝑅)‘(1r‘𝑅)) · ((2𝑀1) · (1𝑀2))))) |
| 146 | 2, 11 | matecl 20231 |
. . . . . 6
⊢ ((2
∈ 𝑁 ∧ 1 ∈
𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (2𝑀1) ∈ (Base‘𝑅)) |
| 147 | 129, 120,
123, 146 | syl3anc 1326 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (2𝑀1) ∈ (Base‘𝑅)) |
| 148 | 2, 11 | matecl 20231 |
. . . . . 6
⊢ ((1
∈ 𝑁 ∧ 2 ∈
𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (1𝑀2) ∈ (Base‘𝑅)) |
| 149 | 120, 129,
123, 148 | syl3anc 1326 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (1𝑀2) ∈ (Base‘𝑅)) |
| 150 | 11, 7 | ringcl 18561 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (2𝑀1) ∈ (Base‘𝑅) ∧ (1𝑀2) ∈ (Base‘𝑅)) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅)) |
| 151 | 22, 147, 149, 150 | syl3anc 1326 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅)) |
| 152 | | m2detleib.m |
. . . . 5
⊢ − =
(-g‘𝑅) |
| 153 | 15, 4, 5, 6, 110, 138, 7, 152 | m2detleiblem7 20433 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅) ∧ ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅)) → (((1𝑀1) · (2𝑀2))(+g‘𝑅)(((invg‘𝑅)‘(1r‘𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
| 154 | 22, 133, 151, 153 | syl3anc 1326 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((1𝑀1) · (2𝑀2))(+g‘𝑅)(((invg‘𝑅)‘(1r‘𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
| 155 | 108, 145,
154 | 3eqtrd 2660 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑅 Σg (𝑘 ∈ {{〈1, 1〉,
〈2, 2〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))))))(+g‘𝑅)(𝑅 Σg (𝑘 ∈ {{〈1, 2〉,
〈2, 1〉}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ·
((mulGrp‘𝑅)
Σg (𝑛 ∈ 𝑁 ↦ ((𝑘‘𝑛)𝑀𝑛))))))) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
| 156 | 10, 63, 155 | 3eqtrd 2660 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |