| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . 3
⊢ ((𝐴 Σg
(𝑛 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) |
| 2 | | simp1 1061 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 3 | 2 | ad2antrr 762 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑁 ∈ Fin) |
| 4 | | crngring 18558 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 5 | 4 | 3ad2ant2 1083 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 6 | 5 | ad2antrr 762 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑅 ∈ Ring) |
| 7 | | chcoeffeq.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 8 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝐴) = (0g‘𝐴) |
| 9 | | chcoeffeq.a |
. . . . . . . . . . 11
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 10 | 9 | matring 20249 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 11 | 4, 10 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
| 12 | | ringcmn 18581 |
. . . . . . . . 9
⊢ (𝐴 ∈ Ring → 𝐴 ∈ CMnd) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ CMnd) |
| 14 | 13 | 3adant3 1081 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐴 ∈ CMnd) |
| 15 | 14 | ad2antrr 762 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝐴 ∈ CMnd) |
| 16 | | nn0ex 11298 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → ℕ0
∈ V) |
| 18 | 3, 6, 10 | syl2anc 693 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝐴 ∈ Ring) |
| 19 | 18 | adantr 481 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring) |
| 20 | 2, 5, 10 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐴 ∈ Ring) |
| 21 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝐴) =
(mulGrp‘𝐴) |
| 22 | 21 | ringmgp 18553 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Ring →
(mulGrp‘𝐴) ∈
Mnd) |
| 23 | 20, 22 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝐴) ∈ Mnd) |
| 24 | 23 | ad3antrrr 766 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) →
(mulGrp‘𝐴) ∈
Mnd) |
| 25 | | simpr 477 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 26 | | simpll3 1102 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑀 ∈ 𝐵) |
| 27 | 26 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
| 28 | 21, 7 | mgpbas 18495 |
. . . . . . . . . 10
⊢ 𝐵 =
(Base‘(mulGrp‘𝐴)) |
| 29 | | cayhamlem.e1 |
. . . . . . . . . 10
⊢ ↑ =
(.g‘(mulGrp‘𝐴)) |
| 30 | 28, 29 | mulgnn0cl 17558 |
. . . . . . . . 9
⊢
(((mulGrp‘𝐴)
∈ Mnd ∧ 𝑛 ∈
ℕ0 ∧ 𝑀
∈ 𝐵) → (𝑛 ↑ 𝑀) ∈ 𝐵) |
| 31 | 24, 25, 27, 30 | syl3anc 1326 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑛 ↑ 𝑀) ∈ 𝐵) |
| 32 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅) |
| 33 | | chcoeffeq.u |
. . . . . . . . . . . 12
⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
| 34 | 9, 7, 32, 33 | cpm2mf 20557 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
| 35 | 2, 5, 34 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
| 36 | 35 | ad3antrrr 766 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
| 37 | | simplr 792 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑠 ∈ ℕ) |
| 38 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) |
| 39 | | chcoeffeq.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (Poly1‘𝑅) |
| 40 | | chcoeffeq.y |
. . . . . . . . . . . 12
⊢ 𝑌 = (𝑁 Mat 𝑃) |
| 41 | | chcoeffeq.r |
. . . . . . . . . . . 12
⊢ × =
(.r‘𝑌) |
| 42 | | chcoeffeq.s |
. . . . . . . . . . . 12
⊢ − =
(-g‘𝑌) |
| 43 | | chcoeffeq.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑌) |
| 44 | | chcoeffeq.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 45 | | chcoeffeq.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| 46 | 9, 7, 39, 40, 41, 42, 43, 44, 45, 32 | chfacfisfcpmat 20660 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)) |
| 47 | 3, 6, 26, 37, 38, 46 | syl32anc 1334 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)) |
| 48 | 47 | ffvelrnda 6359 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ (𝑁 ConstPolyMat 𝑅)) |
| 49 | 36, 48 | ffvelrnd 6360 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) ∈ 𝐵) |
| 50 | | eqid 2622 |
. . . . . . . . 9
⊢
(.r‘𝐴) = (.r‘𝐴) |
| 51 | 7, 50 | ringcl 18561 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ring ∧ (𝑛 ↑ 𝑀) ∈ 𝐵 ∧ (𝑈‘(𝐺‘𝑛)) ∈ 𝐵) → ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) ∈ 𝐵) |
| 52 | 19, 31, 49, 51 | syl3anc 1326 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) ∈ 𝐵) |
| 53 | | eqid 2622 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) |
| 54 | 52, 53 | fmptd 6385 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))):ℕ0⟶𝐵) |
| 55 | | fvexd 6203 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) →
(0g‘𝐴)
∈ V) |
| 56 | | ovexd 6680 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) ∈ V) |
| 57 | 9, 7, 39, 40, 41, 42, 43, 44, 45 | chfacffsupp 20661 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝐺 finSupp (0g‘𝑌)) |
| 58 | 57 | anassrs 680 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝐺 finSupp (0g‘𝑌)) |
| 59 | | ovex 6678 |
. . . . . . . . . . . . 13
⊢ (𝑁 ConstPolyMat 𝑅) ∈ V |
| 60 | 59, 16 | pm3.2i 471 |
. . . . . . . . . . . 12
⊢ ((𝑁 ConstPolyMat 𝑅) ∈ V ∧ ℕ0 ∈
V) |
| 61 | | elmapg 7870 |
. . . . . . . . . . . 12
⊢ (((𝑁 ConstPolyMat 𝑅) ∈ V ∧ ℕ0 ∈
V) → (𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑𝑚
ℕ0) ↔ 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))) |
| 62 | 60, 61 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑𝑚
ℕ0) ↔ 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))) |
| 63 | 47, 62 | mpbird 247 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑𝑚
ℕ0)) |
| 64 | | fvex 6201 |
. . . . . . . . . 10
⊢
(0g‘𝑌) ∈ V |
| 65 | | fsuppmapnn0ub 12795 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑𝑚
ℕ0) ∧ (0g‘𝑌) ∈ V) → (𝐺 finSupp (0g‘𝑌) → ∃𝑤 ∈ ℕ0
∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 → (𝐺‘𝑧) = (0g‘𝑌)))) |
| 66 | 63, 64, 65 | sylancl 694 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝐺 finSupp (0g‘𝑌) → ∃𝑤 ∈ ℕ0
∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 → (𝐺‘𝑧) = (0g‘𝑌)))) |
| 67 | | csbov12g 6689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (⦋𝑧 / 𝑛⦌(𝑛 ↑ 𝑀)(.r‘𝐴)⦋𝑧 / 𝑛⦌(𝑈‘(𝐺‘𝑛)))) |
| 68 | | csbov1g 6690 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝑛 ↑ 𝑀) = (⦋𝑧 / 𝑛⦌𝑛 ↑ 𝑀)) |
| 69 | | csbvarg 4003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌𝑛 = 𝑧) |
| 70 | 69 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℕ0
→ (⦋𝑧 /
𝑛⦌𝑛 ↑ 𝑀) = (𝑧 ↑ 𝑀)) |
| 71 | 68, 70 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝑛 ↑ 𝑀) = (𝑧 ↑ 𝑀)) |
| 72 | | csbfv2g 6232 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝑈‘(𝐺‘𝑛)) = (𝑈‘⦋𝑧 / 𝑛⦌(𝐺‘𝑛))) |
| 73 | | csbfv 6233 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
⦋𝑧 /
𝑛⦌(𝐺‘𝑛) = (𝐺‘𝑧) |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝐺‘𝑛) = (𝐺‘𝑧)) |
| 75 | 74 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℕ0
→ (𝑈‘⦋𝑧 / 𝑛⦌(𝐺‘𝑛)) = (𝑈‘(𝐺‘𝑧))) |
| 76 | 72, 75 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝑈‘(𝐺‘𝑛)) = (𝑈‘(𝐺‘𝑧))) |
| 77 | 71, 76 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℕ0
→ (⦋𝑧 /
𝑛⦌(𝑛 ↑ 𝑀)(.r‘𝐴)⦋𝑧 / 𝑛⦌(𝑈‘(𝐺‘𝑛))) = ((𝑧 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑧)))) |
| 78 | 67, 77 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = ((𝑧 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑧)))) |
| 79 | 78 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = ((𝑧 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑧)))) |
| 80 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑧) = (0g‘𝑌) → (𝑈‘(𝐺‘𝑧)) = (𝑈‘(0g‘𝑌))) |
| 81 | 2, 5 | jca 554 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 82 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 83 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0g‘𝑌) = (0g‘𝑌) |
| 84 | 9, 33, 39, 40, 8, 83 | m2cpminv0 20566 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
| 85 | 82, 84 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
| 86 | 85 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
| 87 | 80, 86 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → (𝑈‘(𝐺‘𝑧)) = (0g‘𝐴)) |
| 88 | 87 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → ((𝑧 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑧))) = ((𝑧 ↑ 𝑀)(.r‘𝐴)(0g‘𝐴))) |
| 89 | 18 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝐴 ∈ Ring) |
| 90 | 23 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) →
(mulGrp‘𝐴) ∈
Mnd) |
| 91 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝑧 ∈
ℕ0) |
| 92 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
| 93 | 28, 29 | mulgnn0cl 17558 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((mulGrp‘𝐴)
∈ Mnd ∧ 𝑧 ∈
ℕ0 ∧ 𝑀
∈ 𝐵) → (𝑧 ↑ 𝑀) ∈ 𝐵) |
| 94 | 90, 91, 92, 93 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝑧 ↑ 𝑀) ∈ 𝐵) |
| 95 | 89, 94 | jca 554 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝐴 ∈ Ring ∧ (𝑧 ↑ 𝑀) ∈ 𝐵)) |
| 96 | 95 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → (𝐴 ∈ Ring ∧ (𝑧 ↑ 𝑀) ∈ 𝐵)) |
| 97 | 7, 50, 8 | ringrz 18588 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ Ring ∧ (𝑧 ↑ 𝑀) ∈ 𝐵) → ((𝑧 ↑ 𝑀)(.r‘𝐴)(0g‘𝐴)) = (0g‘𝐴)) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → ((𝑧 ↑ 𝑀)(.r‘𝐴)(0g‘𝐴)) = (0g‘𝐴)) |
| 99 | 79, 88, 98 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)) |
| 100 | 99 | ex 450 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → ((𝐺‘𝑧) = (0g‘𝑌) → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴))) |
| 101 | 100 | adantlr 751 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑤 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0)
→ ((𝐺‘𝑧) = (0g‘𝑌) → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴))) |
| 102 | 101 | imim2d 57 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑤 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0)
→ ((𝑤 < 𝑧 → (𝐺‘𝑧) = (0g‘𝑌)) → (𝑤 < 𝑧 → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)))) |
| 103 | 102 | ralimdva 2962 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑤 ∈ ℕ0) →
(∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 → (𝐺‘𝑧) = (0g‘𝑌)) → ∀𝑧 ∈ ℕ0 (𝑤 < 𝑧 → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)))) |
| 104 | 103 | reximdva 3017 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (∃𝑤 ∈ ℕ0
∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 → (𝐺‘𝑧) = (0g‘𝑌)) → ∃𝑤 ∈ ℕ0 ∀𝑧 ∈ ℕ0
(𝑤 < 𝑧 → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)))) |
| 105 | 66, 104 | syld 47 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝐺 finSupp (0g‘𝑌) → ∃𝑤 ∈ ℕ0
∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 →
⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)))) |
| 106 | 58, 105 | mpd 15 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → ∃𝑤 ∈ ℕ0
∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 →
⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴))) |
| 107 | 55, 56, 106 | mptnn0fsupp 12797 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) finSupp (0g‘𝐴)) |
| 108 | 7, 8, 15, 17, 54, 107 | gsumcl 18316 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) ∈ 𝐵) |
| 109 | 33, 9, 7, 44 | m2cpminvid 20558 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐴 Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) ∈ 𝐵) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) |
| 110 | 3, 6, 108, 109 | syl3anc 1326 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) |
| 111 | 39, 40 | pmatring 20498 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
| 112 | 2, 5, 111 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
| 113 | | ringmnd 18556 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Mnd) |
| 114 | 112, 113 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Mnd) |
| 115 | 114 | ad2antrr 762 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑌 ∈ Mnd) |
| 116 | | chcoeffeq.w |
. . . . . . . . . 10
⊢ 𝑊 = (Base‘𝑌) |
| 117 | 44, 9, 7, 39, 40, 116 | mat2pmatghm 20535 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝑌)) |
| 118 | 3, 6, 117 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑇 ∈ (𝐴 GrpHom 𝑌)) |
| 119 | | ghmmhm 17670 |
. . . . . . . 8
⊢ (𝑇 ∈ (𝐴 GrpHom 𝑌) → 𝑇 ∈ (𝐴 MndHom 𝑌)) |
| 120 | 118, 119 | syl 17 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑇 ∈ (𝐴 MndHom 𝑌)) |
| 121 | 20 | ad3antrrr 766 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring) |
| 122 | 4, 34 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
| 123 | 122 | 3adant3 1081 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
| 124 | 123 | ad3antrrr 766 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
| 125 | 124, 48 | ffvelrnd 6360 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) ∈ 𝐵) |
| 126 | 121, 31, 125, 51 | syl3anc 1326 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) ∈ 𝐵) |
| 127 | 7, 8, 15, 115, 17, 120, 126, 107 | gsummptmhm 18340 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) = (𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))))) |
| 128 | 44, 9, 7, 39, 40, 116 | mat2pmatrhm 20539 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑌)) |
| 129 | 128 | 3adant3 1081 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑇 ∈ (𝐴 RingHom 𝑌)) |
| 130 | 129 | ad3antrrr 766 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑇 ∈ (𝐴 RingHom 𝑌)) |
| 131 | 7, 50, 41 | rhmmul 18727 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ (𝐴 RingHom 𝑌) ∧ (𝑛 ↑ 𝑀) ∈ 𝐵 ∧ (𝑈‘(𝐺‘𝑛)) ∈ 𝐵) → (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) = ((𝑇‘(𝑛 ↑ 𝑀)) × (𝑇‘(𝑈‘(𝐺‘𝑛))))) |
| 132 | 130, 31, 125, 131 | syl3anc 1326 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) = ((𝑇‘(𝑛 ↑ 𝑀)) × (𝑇‘(𝑈‘(𝐺‘𝑛))))) |
| 133 | 44, 9, 7, 39, 40, 116 | mat2pmatmhm 20538 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌))) |
| 134 | 133 | 3adant3 1081 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌))) |
| 135 | 134 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌))) |
| 136 | | cayhamlem.e2 |
. . . . . . . . . . . 12
⊢ 𝐸 =
(.g‘(mulGrp‘𝑌)) |
| 137 | 28, 29, 136 | mhmmulg 17583 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)) ∧ 𝑛 ∈ ℕ0 ∧ 𝑀 ∈ 𝐵) → (𝑇‘(𝑛 ↑ 𝑀)) = (𝑛𝐸(𝑇‘𝑀))) |
| 138 | 135, 25, 27, 137 | syl3anc 1326 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑛 ↑ 𝑀)) = (𝑛𝐸(𝑇‘𝑀))) |
| 139 | 2 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
| 140 | 5 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 141 | 32, 33, 44 | m2cpminvid2 20560 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺‘𝑛) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝐺‘𝑛)) |
| 142 | 139, 140,
48, 141 | syl3anc 1326 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝐺‘𝑛)) |
| 143 | 138, 142 | oveq12d 6668 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑇‘(𝑛 ↑ 𝑀)) × (𝑇‘(𝑈‘(𝐺‘𝑛)))) = ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))) |
| 144 | 132, 143 | eqtrd 2656 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) = ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))) |
| 145 | 144 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) |
| 146 | 145 | oveq2d 6666 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) |
| 147 | 127, 146 | eqtr3d 2658 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) |
| 148 | 147 | fveq2d 6195 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
| 149 | 110, 148 | eqtr3d 2658 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
| 150 | 1, 149 | sylan9eqr 2678 |
. 2
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
| 151 | | chcoeffeq.c |
. . 3
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| 152 | | chcoeffeq.k |
. . 3
⊢ 𝐾 = (𝐶‘𝑀) |
| 153 | | chcoeffeq.1 |
. . 3
⊢ 1 =
(1r‘𝐴) |
| 154 | | chcoeffeq.m |
. . 3
⊢ ∗ = (
·𝑠 ‘𝐴) |
| 155 | 9, 7, 39, 40, 41, 42, 43, 44, 151, 152, 45, 116, 153, 154, 33, 29, 50 | cayhamlem3 20692 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) |
| 156 | 150, 155 | reximddv2 3020 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |