Proof of Theorem stoweidlem13
| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem13.3 |
. . . 4
   |
| 2 | | stoweidlem13.2 |
. . . 4
   |
| 3 | 1, 2 | resubcld 10458 |
. . 3
     |
| 4 | | 2re 11090 |
. . . 4
 |
| 5 | | stoweidlem13.1 |
. . . . 5
   |
| 6 | 5 | rpred 11872 |
. . . 4
   |
| 7 | | remulcl 10021 |
. . . 4
 
     |
| 8 | 4, 6, 7 | sylancr 695 |
. . 3
     |
| 9 | 1 | recnd 10068 |
. . . . 5
   |
| 10 | 2 | recnd 10068 |
. . . . 5
   |
| 11 | 9, 10 | negsubdi2d 10408 |
. . . 4
        |
| 12 | 2, 1 | resubcld 10458 |
. . . . 5
     |
| 13 | | 1red 10055 |
. . . . . 6
   |
| 14 | 13, 6 | remulcld 10070 |
. . . . 5
     |
| 15 | | stoweidlem13.4 |
. . . . . . . . . . 11
   |
| 16 | | 3re 11094 |
. . . . . . . . . . . . 13
 |
| 17 | | 3ne0 11115 |
. . . . . . . . . . . . 13
 |
| 18 | 16, 17 | rereccli 10790 |
. . . . . . . . . . . 12
   |
| 19 | 18 | a1i 11 |
. . . . . . . . . . 11
     |
| 20 | 15, 19 | resubcld 10458 |
. . . . . . . . . 10
       |
| 21 | 20, 6 | remulcld 10070 |
. . . . . . . . 9
         |
| 22 | 21, 1 | resubcld 10458 |
. . . . . . . 8
           |
| 23 | | 4re 11097 |
. . . . . . . . . . . . 13
 |
| 24 | 23, 16, 17 | 3pm3.2i 1239 |
. . . . . . . . . . . 12
   |
| 25 | | redivcl 10744 |
. . . . . . . . . . . 12
 
     |
| 26 | 24, 25 | mp1i 13 |
. . . . . . . . . . 11
     |
| 27 | 15, 26 | resubcld 10458 |
. . . . . . . . . 10
       |
| 28 | 27, 6 | remulcld 10070 |
. . . . . . . . 9
         |
| 29 | 21, 28 | resubcld 10458 |
. . . . . . . 8
                 |
| 30 | | stoweidlem13.6 |
. . . . . . . . 9

        |
| 31 | 2, 21, 1, 30 | lesub1dd 10643 |
. . . . . . . 8
  
          |
| 32 | | stoweidlem13.7 |
. . . . . . . . 9
      
  |
| 33 | 28, 1, 21, 32 | ltsub2dd 10640 |
. . . . . . . 8
        
                |
| 34 | 12, 22, 29, 31, 33 | lelttrd 10195 |
. . . . . . 7
  
                |
| 35 | 15 | recnd 10068 |
. . . . . . . . . 10
   |
| 36 | 19 | recnd 10068 |
. . . . . . . . . 10
     |
| 37 | 35, 36 | subcld 10392 |
. . . . . . . . 9
       |
| 38 | 26 | recnd 10068 |
. . . . . . . . . 10
     |
| 39 | 35, 38 | subcld 10392 |
. . . . . . . . 9
       |
| 40 | 6 | recnd 10068 |
. . . . . . . . 9
   |
| 41 | 37, 39, 40 | subdird 10487 |
. . . . . . . 8
                             |
| 42 | 35, 36, 35, 38 | sub4d 10441 |
. . . . . . . . . 10
                       |
| 43 | 35, 35 | subcld 10392 |
. . . . . . . . . . 11
     |
| 44 | 43, 36, 38 | subsub2d 10421 |
. . . . . . . . . 10
                       |
| 45 | 42, 44 | eqtrd 2656 |
. . . . . . . . 9
                       |
| 46 | 45 | oveq1d 6665 |
. . . . . . . 8
                           |
| 47 | 41, 46 | eqtr3d 2658 |
. . . . . . 7
                             |
| 48 | 34, 47 | breqtrd 4679 |
. . . . . 6
  
              |
| 49 | 35 | subidd 10380 |
. . . . . . . . 9
     |
| 50 | 49 | oveq1d 6665 |
. . . . . . . 8
                     |
| 51 | | 4cn 11098 |
. . . . . . . . . . . 12
 |
| 52 | | 3cn 11095 |
. . . . . . . . . . . 12
 |
| 53 | 51, 52, 17 | divcli 10767 |
. . . . . . . . . . 11
   |
| 54 | | ax-1cn 9994 |
. . . . . . . . . . . 12
 |
| 55 | 54, 52, 17 | divcli 10767 |
. . . . . . . . . . 11
   |
| 56 | | 1div1e1 10717 |
. . . . . . . . . . . . . 14
   |
| 57 | 56 | oveq2i 6661 |
. . . . . . . . . . . . 13
           |
| 58 | | ax-1ne0 10005 |
. . . . . . . . . . . . . 14
 |
| 59 | 54, 52, 54, 54, 17, 58 | divadddivi 10787 |
. . . . . . . . . . . . 13
                 |
| 60 | 57, 59 | eqtr3i 2646 |
. . . . . . . . . . . 12
               |
| 61 | 52, 54 | addcomi 10227 |
. . . . . . . . . . . . . 14
     |
| 62 | | df-4 11081 |
. . . . . . . . . . . . . 14
   |
| 63 | | 1t1e1 11175 |
. . . . . . . . . . . . . . 15
   |
| 64 | 52 | mulid2i 10043 |
. . . . . . . . . . . . . . 15
   |
| 65 | 63, 64 | oveq12i 6662 |
. . . . . . . . . . . . . 14
         |
| 66 | 61, 62, 65 | 3eqtr4ri 2655 |
. . . . . . . . . . . . 13
       |
| 67 | 66 | oveq1i 6660 |
. . . . . . . . . . . 12
               |
| 68 | | 3t1e3 11178 |
. . . . . . . . . . . . 13
   |
| 69 | 68 | oveq2i 6661 |
. . . . . . . . . . . 12
       |
| 70 | 60, 67, 69 | 3eqtri 2648 |
. . . . . . . . . . 11
       |
| 71 | 53, 55, 54, 70 | subaddrii 10370 |
. . . . . . . . . 10
       |
| 72 | 71 | oveq2i 6661 |
. . . . . . . . 9
           |
| 73 | | 1e0p1 11552 |
. . . . . . . . 9
   |
| 74 | 72, 73 | eqtr4i 2647 |
. . . . . . . 8
         |
| 75 | 50, 74 | syl6eq 2672 |
. . . . . . 7
             |
| 76 | 75 | oveq1d 6665 |
. . . . . 6
                 |
| 77 | 48, 76 | breqtrd 4679 |
. . . . 5
  
    |
| 78 | | 1lt2 11194 |
. . . . . 6
 |
| 79 | 4 | a1i 11 |
. . . . . . 7
   |
| 80 | 13, 79, 5 | ltmul1d 11913 |
. . . . . 6
         |
| 81 | 78, 80 | mpbii 223 |
. . . . 5
  
    |
| 82 | 12, 14, 8, 77, 81 | lttrd 10198 |
. . . 4
  
    |
| 83 | 11, 82 | eqbrtrd 4675 |
. . 3
        |
| 84 | 3, 8, 83 | ltnegcon1d 10607 |
. 2
    
   |
| 85 | | 5re 11099 |
. . . . . 6
 |
| 86 | 85 | a1i 11 |
. . . . 5
   |
| 87 | 16 | a1i 11 |
. . . . 5
   |
| 88 | 17 | a1i 11 |
. . . . 5
   |
| 89 | 86, 87, 88 | redivcld 10853 |
. . . 4
     |
| 90 | 89, 6 | remulcld 10070 |
. . 3
       |
| 91 | 2 | renegcld 10457 |
. . . . 5
    |
| 92 | 15, 19 | readdcld 10069 |
. . . . . 6
       |
| 93 | 92, 6 | remulcld 10070 |
. . . . 5
         |
| 94 | 28 | renegcld 10457 |
. . . . 5
          |
| 95 | | stoweidlem13.8 |
. . . . 5
         |
| 96 | | stoweidlem13.5 |
. . . . . 6
      
  |
| 97 | 28, 2 | ltnegd 10605 |
. . . . . 6
                   |
| 98 | 96, 97 | mpbid 222 |
. . . . 5
           |
| 99 | 1, 91, 93, 94, 95, 98 | lt2addd 10650 |
. . . 4
                     |
| 100 | 9, 10 | negsubd 10398 |
. . . 4
        |
| 101 | 35, 36, 40 | adddird 10065 |
. . . . . 6
                 |
| 102 | 35, 38 | negsubd 10398 |
. . . . . . . . . . 11
            |
| 103 | 102 | eqcomd 2628 |
. . . . . . . . . 10
            |
| 104 | 103 | oveq1d 6665 |
. . . . . . . . 9
                |
| 105 | 38 | negcld 10379 |
. . . . . . . . . 10
      |
| 106 | 35, 105, 40 | adddird 10065 |
. . . . . . . . 9
                   |
| 107 | 38, 40 | mulneg1d 10483 |
. . . . . . . . . 10
             |
| 108 | 107 | oveq2d 6666 |
. . . . . . . . 9
                     |
| 109 | 104, 106,
108 | 3eqtrd 2660 |
. . . . . . . 8
                  |
| 110 | 109 | negeqd 10275 |
. . . . . . 7
                    |
| 111 | 35, 40 | mulcld 10060 |
. . . . . . . 8
     |
| 112 | 38, 40 | mulcld 10060 |
. . . . . . . . 9
       |
| 113 | 112 | negcld 10379 |
. . . . . . . 8
        |
| 114 | 111, 113 | negdid 10405 |
. . . . . . 7
                        |
| 115 | 112 | negnegd 10383 |
. . . . . . . 8
             |
| 116 | 115 | oveq2d 6666 |
. . . . . . 7
                       |
| 117 | 110, 114,
116 | 3eqtrd 2660 |
. . . . . 6
                   |
| 118 | 101, 117 | oveq12d 6668 |
. . . . 5
                                     |
| 119 | 36, 40 | mulcld 10060 |
. . . . . . . 8
       |
| 120 | 111 | negcld 10379 |
. . . . . . . 8
      |
| 121 | 111, 119,
120, 112 | add4d 10264 |
. . . . . . 7
                                         |
| 122 | 111 | negidd 10382 |
. . . . . . . 8
          |
| 123 | 122 | oveq1d 6665 |
. . . . . . 7
                                  |
| 124 | 119, 112 | addcld 10059 |
. . . . . . . 8
             |
| 125 | 124 | addid2d 10237 |
. . . . . . 7
                         |
| 126 | 121, 123,
125 | 3eqtrd 2660 |
. . . . . 6
                                |
| 127 | 36, 38, 40 | adddird 10065 |
. . . . . 6
                     |
| 128 | 87 | recnd 10068 |
. . . . . . . 8
   |
| 129 | 36, 38 | addcld 10059 |
. . . . . . . 8
         |
| 130 | 128, 36, 38 | adddid 10064 |
. . . . . . . . 9
                     |
| 131 | 54, 51 | addcomi 10227 |
. . . . . . . . . 10
     |
| 132 | 54, 52, 17 | divcan2i 10768 |
. . . . . . . . . . 11
     |
| 133 | 51, 52, 17 | divcan2i 10768 |
. . . . . . . . . . 11
     |
| 134 | 132, 133 | oveq12i 6662 |
. . . . . . . . . 10
             |
| 135 | | df-5 11082 |
. . . . . . . . . 10
   |
| 136 | 131, 134,
135 | 3eqtr4i 2654 |
. . . . . . . . 9
           |
| 137 | 130, 136 | syl6eq 2672 |
. . . . . . . 8
           |
| 138 | 128, 129,
88, 137 | mvllmuld 10857 |
. . . . . . 7
           |
| 139 | 138 | oveq1d 6665 |
. . . . . 6
               |
| 140 | 126, 127,
139 | 3eqtr2d 2662 |
. . . . 5
                          |
| 141 | 118, 140 | eqtrd 2656 |
. . . 4
                      |
| 142 | 99, 100, 141 | 3brtr3d 4684 |
. . 3
  
      |
| 143 | | 5lt6 11204 |
. . . . . . 7
 |
| 144 | | 3t2e6 11179 |
. . . . . . 7
   |
| 145 | 143, 144 | breqtrri 4680 |
. . . . . 6
   |
| 146 | | 3pos 11114 |
. . . . . . . 8
 |
| 147 | 16, 146 | pm3.2i 471 |
. . . . . . 7
   |
| 148 | | ltdivmul 10898 |
. . . . . . 7
 
           |
| 149 | 85, 4, 147, 148 | mp3an 1424 |
. . . . . 6
  
    |
| 150 | 145, 149 | mpbir 221 |
. . . . 5
   |
| 151 | 150 | a1i 11 |
. . . 4
  
  |
| 152 | 89, 79, 5, 151 | ltmul1dd 11927 |
. . 3
    
    |
| 153 | 3, 90, 8, 142, 152 | lttrd 10198 |
. 2
  
    |
| 154 | 3, 8 | absltd 14168 |
. 2
     
 
 
      
       |
| 155 | 84, 153, 154 | mpbir2and 957 |
1
    
 
    |