![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem58 | Structured version Visualization version GIF version |
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem58.1 | ⊢ Ⅎ𝑡𝐷 |
stoweidlem58.2 | ⊢ Ⅎ𝑡𝑈 |
stoweidlem58.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem58.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem58.5 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem58.6 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem58.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
stoweidlem58.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
stoweidlem58.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem58.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem58.11 | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
stoweidlem58.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
stoweidlem58.13 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
stoweidlem58.14 | ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) |
stoweidlem58.15 | ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) |
stoweidlem58.16 | ⊢ 𝑈 = (𝑇 ∖ 𝐵) |
stoweidlem58.17 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
stoweidlem58.18 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem58 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem58.1 | . . 3 ⊢ Ⅎ𝑡𝐷 | |
2 | stoweidlem58.3 | . . . 4 ⊢ Ⅎ𝑡𝜑 | |
3 | 1 | nfeq1 2778 | . . . 4 ⊢ Ⅎ𝑡 𝐷 = ∅ |
4 | 2, 3 | nfan 1828 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 = ∅) |
5 | eqid 2622 | . . 3 ⊢ (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ 𝑇 ↦ 1) | |
6 | stoweidlem58.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
7 | stoweidlem58.11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) | |
8 | 7 | adantlr 751 | . . 3 ⊢ (((𝜑 ∧ 𝐷 = ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
9 | stoweidlem58.13 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
11 | stoweidlem58.17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐸 ∈ ℝ+) |
13 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐷 = ∅) | |
14 | 1, 4, 5, 6, 8, 10, 12, 13 | stoweidlem18 40235 | . 2 ⊢ ((𝜑 ∧ 𝐷 = ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
15 | stoweidlem58.2 | . . 3 ⊢ Ⅎ𝑡𝑈 | |
16 | nfcv 2764 | . . . . 5 ⊢ Ⅎ𝑡∅ | |
17 | 1, 16 | nfne 2894 | . . . 4 ⊢ Ⅎ𝑡 𝐷 ≠ ∅ |
18 | 2, 17 | nfan 1828 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 ≠ ∅) |
19 | eqid 2622 | . . 3 ⊢ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} | |
20 | eqid 2622 | . . 3 ⊢ {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} | |
21 | stoweidlem58.4 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
22 | stoweidlem58.6 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
23 | stoweidlem58.16 | . . 3 ⊢ 𝑈 = (𝑇 ∖ 𝐵) | |
24 | stoweidlem58.7 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
25 | 24 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐽 ∈ Comp) |
26 | stoweidlem58.8 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
27 | 26 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐴 ⊆ 𝐶) |
28 | stoweidlem58.9 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
29 | 28 | 3adant1r 1319 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
30 | stoweidlem58.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
31 | 30 | 3adant1r 1319 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
32 | 7 | adantlr 751 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
33 | stoweidlem58.12 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
34 | 33 | adantlr 751 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
35 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
36 | stoweidlem58.14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) | |
37 | 36 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ∈ (Clsd‘𝐽)) |
38 | stoweidlem58.15 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) | |
39 | 38 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → (𝐵 ∩ 𝐷) = ∅) |
40 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ≠ ∅) | |
41 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 ∈ ℝ+) |
42 | stoweidlem58.18 | . . . 4 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
43 | 42 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 < (1 / 3)) |
44 | 1, 15, 18, 19, 20, 21, 6, 22, 23, 25, 27, 29, 31, 32, 34, 35, 37, 39, 40, 41, 43 | stoweidlem57 40274 | . 2 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
45 | 14, 44 | pm2.61dane 2881 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 {crab 2916 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ∪ cuni 4436 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 < clt 10074 ≤ cle 10075 − cmin 10266 / cdiv 10684 3c3 11071 ℝ+crp 11832 (,)cioo 12175 topGenctg 16098 Clsdccld 20820 Cn ccn 21028 Compccmp 21189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-cn 21031 df-cnp 21032 df-cmp 21190 df-tx 21365 df-hmeo 21558 df-xms 22125 df-ms 22126 df-tms 22127 |
This theorem is referenced by: stoweidlem59 40276 |
Copyright terms: Public domain | W3C validator |