MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a Structured version   Visualization version   Unicode version

Theorem 2lgslem1a 25116
Description: Lemma 1 for 2lgslem1 25119. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  { x  e.  ZZ  |  E. i  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  / 
2 )  <  (
x  mod  P )
) }  =  {
x  e.  ZZ  |  E. i  e.  (
( ( |_ `  ( P  /  4
) )  +  1 ) ... ( ( P  -  1 )  /  2 ) ) x  =  ( i  x.  2 ) } )
Distinct variable group:    P, i, x

Proof of Theorem 2lgslem1a
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 prmnn 15388 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
21nnnn0d 11351 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e. 
NN0 )
32ad2antrr 762 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  P  e. 
NN0 )
4 4nn 11187 . . . . . . . 8  |-  4  e.  NN
53, 4jctir 561 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  ( P  e.  NN0  /\  4  e.  NN ) )
6 fldivnn0 12623 . . . . . . 7  |-  ( ( P  e.  NN0  /\  4  e.  NN )  ->  ( |_ `  ( P  /  4 ) )  e.  NN0 )
7 nn0p1nn 11332 . . . . . . 7  |-  ( ( |_ `  ( P  /  4 ) )  e.  NN0  ->  ( ( |_ `  ( P  /  4 ) )  +  1 )  e.  NN )
85, 6, 73syl 18 . . . . . 6  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  ( ( |_ `  ( P  /  4 ) )  +  1 )  e.  NN )
9 elnnuz 11724 . . . . . 6  |-  ( ( ( |_ `  ( P  /  4 ) )  +  1 )  e.  NN  <->  ( ( |_
`  ( P  / 
4 ) )  +  1 )  e.  (
ZZ>= `  1 ) )
108, 9sylib 208 . . . . 5  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  ( ( |_ `  ( P  /  4 ) )  +  1 )  e.  ( ZZ>= `  1 )
)
11 fzss1 12380 . . . . 5  |-  ( ( ( |_ `  ( P  /  4 ) )  +  1 )  e.  ( ZZ>= `  1 )  ->  ( ( ( |_
`  ( P  / 
4 ) )  +  1 ) ... (
( P  -  1 )  /  2 ) )  C_  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
12 rexss 3669 . . . . 5  |-  ( ( ( ( |_ `  ( P  /  4
) )  +  1 ) ... ( ( P  -  1 )  /  2 ) ) 
C_  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  ( E. i  e.  (
( ( |_ `  ( P  /  4
) )  +  1 ) ... ( ( P  -  1 )  /  2 ) ) x  =  ( i  x.  2 )  <->  E. i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( i  e.  ( ( ( |_
`  ( P  / 
4 ) )  +  1 ) ... (
( P  -  1 )  /  2 ) )  /\  x  =  ( i  x.  2 ) ) ) )
1310, 11, 123syl 18 . . . 4  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  ( E. i  e.  ( ( ( |_ `  ( P  /  4 ) )  +  1 ) ... ( ( P  - 
1 )  /  2
) ) x  =  ( i  x.  2 )  <->  E. i  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( i  e.  ( ( ( |_ `  ( P  /  4
) )  +  1 ) ... ( ( P  -  1 )  /  2 ) )  /\  x  =  ( i  x.  2 ) ) ) )
14 ancom 466 . . . . . 6  |-  ( ( i  e.  ( ( ( |_ `  ( P  /  4 ) )  +  1 ) ... ( ( P  - 
1 )  /  2
) )  /\  x  =  ( i  x.  2 ) )  <->  ( x  =  ( i  x.  2 )  /\  i  e.  ( ( ( |_
`  ( P  / 
4 ) )  +  1 ) ... (
( P  -  1 )  /  2 ) ) ) )
152, 4jctir 561 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  ( P  e.  NN0  /\  4  e.  NN ) )
1615, 6syl 17 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Prime  ->  ( |_
`  ( P  / 
4 ) )  e. 
NN0 )
1716nn0zd 11480 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  ( |_
`  ( P  / 
4 ) )  e.  ZZ )
1817ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  ( |_
`  ( P  / 
4 ) )  e.  ZZ )
19 elfzelz 12342 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  i  e.  ZZ )
20 zltp1le 11427 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  ( P  /  4 ) )  e.  ZZ  /\  i  e.  ZZ )  ->  (
( |_ `  ( P  /  4 ) )  <  i  <->  ( ( |_ `  ( P  / 
4 ) )  +  1 )  <_  i
) )
2118, 19, 20syl2an 494 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( |_ `  ( P  /  4 ) )  <  i  <->  ( ( |_ `  ( P  / 
4 ) )  +  1 )  <_  i
) )
2221bicomd 213 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( |_ `  ( P  /  4
) )  +  1 )  <_  i  <->  ( |_ `  ( P  /  4
) )  <  i
) )
2322anbi1d 741 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  i  /\  i  <_  ( ( P  -  1 )  /  2 ) )  <-> 
( ( |_ `  ( P  /  4
) )  <  i  /\  i  <_  ( ( P  -  1 )  /  2 ) ) ) )
2419adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  i  e.  ZZ )
2517peano2zd 11485 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  ( ( |_ `  ( P  /  4 ) )  +  1 )  e.  ZZ )
2625adantr 481 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( |_ `  ( P  /  4
) )  +  1 )  e.  ZZ )
2726ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( |_ `  ( P  /  4 ) )  +  1 )  e.  ZZ )
28 prmz 15389 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ZZ )
29 oddm1d2 15084 . . . . . . . . . . . . . . 15  |-  ( P  e.  ZZ  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3028, 29syl 17 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
3130biimpa 501 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( ( P  - 
1 )  /  2
)  e.  ZZ )
3231ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
33 elfz 12332 . . . . . . . . . . . 12  |-  ( ( i  e.  ZZ  /\  ( ( |_ `  ( P  /  4
) )  +  1 )  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ )  ->  ( i  e.  ( ( ( |_
`  ( P  / 
4 ) )  +  1 ) ... (
( P  -  1 )  /  2 ) )  <->  ( ( ( |_ `  ( P  /  4 ) )  +  1 )  <_ 
i  /\  i  <_  ( ( P  -  1 )  /  2 ) ) ) )
3424, 27, 32, 33syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  e.  ( ( ( |_ `  ( P  /  4 ) )  +  1 ) ... ( ( P  - 
1 )  /  2
) )  <->  ( (
( |_ `  ( P  /  4 ) )  +  1 )  <_ 
i  /\  i  <_  ( ( P  -  1 )  /  2 ) ) ) )
35 elfzle2 12345 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  i  <_  ( ( P  - 
1 )  /  2
) )
3635adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  i  <_  ( ( P  - 
1 )  /  2
) )
3736biantrud 528 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( |_ `  ( P  /  4 ) )  <  i  <->  ( ( |_ `  ( P  / 
4 ) )  < 
i  /\  i  <_  ( ( P  -  1 )  /  2 ) ) ) )
3823, 34, 373bitr4d 300 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  e.  ( ( ( |_ `  ( P  /  4 ) )  +  1 ) ... ( ( P  - 
1 )  /  2
) )  <->  ( |_ `  ( P  /  4
) )  <  i
) )
3928ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  P  e.  ZZ )
40 2lgslem1a2 25115 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  i  e.  ZZ )  ->  ( ( |_ `  ( P  /  4
) )  <  i  <->  ( P  /  2 )  <  ( i  x.  2 ) ) )
4139, 19, 40syl2an 494 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( |_ `  ( P  /  4 ) )  <  i  <->  ( P  /  2 )  < 
( i  x.  2 ) ) )
4238, 41bitrd 268 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  e.  ( ( ( |_ `  ( P  /  4 ) )  +  1 ) ... ( ( P  - 
1 )  /  2
) )  <->  ( P  /  2 )  < 
( i  x.  2 ) ) )
43 2lgslem1a1 25114 . . . . . . . . . . . . 13  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  A. k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( k  x.  2 )  =  ( ( k  x.  2 )  mod  P ) )
441, 43sylan 488 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  A. k  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( k  x.  2 )  =  ( ( k  x.  2 )  mod 
P ) )
4544adantr 481 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  A. k  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( k  x.  2 )  =  ( ( k  x.  2 )  mod  P ) )
46 oveq1 6657 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  (
k  x.  2 )  =  ( i  x.  2 ) )
4746oveq1d 6665 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  (
( k  x.  2 )  mod  P )  =  ( ( i  x.  2 )  mod 
P ) )
4846, 47eqeq12d 2637 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
( k  x.  2 )  =  ( ( k  x.  2 )  mod  P )  <->  ( i  x.  2 )  =  ( ( i  x.  2 )  mod  P ) ) )
4948rspccva 3308 . . . . . . . . . . 11  |-  ( ( A. k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( k  x.  2 )  =  ( ( k  x.  2 )  mod  P )  /\  i  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )  ->  ( i  x.  2 )  =  ( ( i  x.  2 )  mod  P ) )
5045, 49sylan 488 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  x.  2 )  =  ( ( i  x.  2 )  mod 
P ) )
5150breq2d 4665 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  /  2
)  <  ( i  x.  2 )  <->  ( P  /  2 )  < 
( ( i  x.  2 )  mod  P
) ) )
5242, 51bitrd 268 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
i  e.  ( ( ( |_ `  ( P  /  4 ) )  +  1 ) ... ( ( P  - 
1 )  /  2
) )  <->  ( P  /  2 )  < 
( ( i  x.  2 )  mod  P
) ) )
53 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  ( i  x.  2 )  ->  (
x  mod  P )  =  ( ( i  x.  2 )  mod 
P ) )
5453eqcomd 2628 . . . . . . . . 9  |-  ( x  =  ( i  x.  2 )  ->  (
( i  x.  2 )  mod  P )  =  ( x  mod  P ) )
5554breq2d 4665 . . . . . . . 8  |-  ( x  =  ( i  x.  2 )  ->  (
( P  /  2
)  <  ( (
i  x.  2 )  mod  P )  <->  ( P  /  2 )  < 
( x  mod  P
) ) )
5652, 55sylan9bb 736 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  x  =  ( i  x.  2 ) )  -> 
( i  e.  ( ( ( |_ `  ( P  /  4
) )  +  1 ) ... ( ( P  -  1 )  /  2 ) )  <-> 
( P  /  2
)  <  ( x  mod  P ) ) )
5756pm5.32da 673 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( x  =  ( i  x.  2 )  /\  i  e.  ( ( ( |_ `  ( P  /  4
) )  +  1 ) ... ( ( P  -  1 )  /  2 ) ) )  <->  ( x  =  ( i  x.  2 )  /\  ( P  /  2 )  < 
( x  mod  P
) ) ) )
5814, 57syl5bb 272 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  -.  2  ||  P )  /\  x  e.  ZZ )  /\  i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( i  e.  ( ( ( |_ `  ( P  /  4
) )  +  1 ) ... ( ( P  -  1 )  /  2 ) )  /\  x  =  ( i  x.  2 ) )  <->  ( x  =  ( i  x.  2 )  /\  ( P  /  2 )  < 
( x  mod  P
) ) ) )
5958rexbidva 3049 . . . 4  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  ( E. i  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( i  e.  ( ( ( |_ `  ( P  /  4 ) )  +  1 ) ... ( ( P  - 
1 )  /  2
) )  /\  x  =  ( i  x.  2 ) )  <->  E. i  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2 )  < 
( x  mod  P
) ) ) )
6013, 59bitrd 268 . . 3  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  ( E. i  e.  ( ( ( |_ `  ( P  /  4 ) )  +  1 ) ... ( ( P  - 
1 )  /  2
) ) x  =  ( i  x.  2 )  <->  E. i  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  / 
2 )  <  (
x  mod  P )
) ) )
6160bicomd 213 . 2  |-  ( ( ( P  e.  Prime  /\ 
-.  2  ||  P
)  /\  x  e.  ZZ )  ->  ( E. i  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
)  <  ( x  mod  P ) )  <->  E. i  e.  ( ( ( |_
`  ( P  / 
4 ) )  +  1 ) ... (
( P  -  1 )  /  2 ) ) x  =  ( i  x.  2 ) ) )
6261rabbidva 3188 1  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  { x  e.  ZZ  |  E. i  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  / 
2 )  <  (
x  mod  P )
) }  =  {
x  e.  ZZ  |  E. i  e.  (
( ( |_ `  ( P  /  4
) )  +  1 ) ... ( ( P  -  1 )  /  2 ) ) x  =  ( i  x.  2 ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   |_cfl 12591    mod cmo 12668    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-dvds 14984  df-prm 15386
This theorem is referenced by:  2lgslem1  25119
  Copyright terms: Public domain W3C validator