MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1c Structured version   Visualization version   Unicode version

Theorem 2lgslem1c 25118
Description: Lemma 3 for 2lgslem1 25119. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )

Proof of Theorem 2lgslem1c
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prmnn 15388 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 11299 . . . 4  |-  ( P  e.  NN  ->  P  e.  NN0 )
3 oddnn02np1 15072 . . . 4  |-  ( P  e.  NN0  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
41, 2, 33syl 18 . . 3  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
5 iftrue 4092 . . . . . . . . . 10  |-  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
65adantr 481 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
7 2nn 11185 . . . . . . . . . . 11  |-  2  e.  NN
8 nn0ledivnn 11941 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  /\  2  e.  NN )  ->  ( n  /  2
)  <_  n )
97, 8mpan2 707 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  /  2 )  <_  n )
109adantl 482 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  -> 
( n  /  2
)  <_  n )
116, 10eqbrtrd 4675 . . . . . . . 8  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
12 iffalse 4095 . . . . . . . . . 10  |-  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( ( n  -  1 )  /  2 ) )
1312adantr 481 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  =  ( ( n  - 
1 )  /  2
) )
14 nn0re 11301 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  RR )
15 peano2rem 10348 . . . . . . . . . . . . 13  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
1615rehalfcld 11279 . . . . . . . . . . . 12  |-  ( n  e.  RR  ->  (
( n  -  1 )  /  2 )  e.  RR )
1714, 16syl 17 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  e.  RR )
1814rehalfcld 11279 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( n  /  2 )  e.  RR )
1914lem1d 10957 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( n  -  1 )  <_  n )
2014, 15syl 17 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( n  -  1 )  e.  RR )
21 2re 11090 . . . . . . . . . . . . . . 15  |-  2  e.  RR
22 2pos 11112 . . . . . . . . . . . . . . 15  |-  0  <  2
2321, 22pm3.2i 471 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
2423a1i 11 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( 2  e.  RR  /\  0  <  2 ) )
25 lediv1 10888 . . . . . . . . . . . . 13  |-  ( ( ( n  -  1 )  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( n  -  1 )  <_  n 
<->  ( ( n  - 
1 )  /  2
)  <_  ( n  /  2 ) ) )
2620, 14, 24, 25syl3anc 1326 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  <_  n  <->  ( (
n  -  1 )  /  2 )  <_ 
( n  /  2
) ) )
2719, 26mpbid 222 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_ 
( n  /  2
) )
2817, 18, 14, 27, 9letrd 10194 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_  n )
2928adantl 482 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  ( ( n  -  1 )  / 
2 )  <_  n
)
3013, 29eqbrtrd 4675 . . . . . . . 8  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3111, 30pm2.61ian 831 . . . . . . 7  |-  ( n  e.  NN0  ->  if ( 2  ||  n ,  ( n  /  2
) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
3231ad2antlr 763 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
33 nn0z 11400 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  ZZ )
3433adantl 482 . . . . . . 7  |-  ( ( P  e.  Prime  /\  n  e.  NN0 )  ->  n  e.  ZZ )
35 eqcom 2629 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  <->  P  =  ( ( 2  x.  n )  +  1 ) )
3635biimpi 206 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  P  =  ( ( 2  x.  n )  +  1 ) )
37 flodddiv4 15137 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  P  =  ( (
2  x.  n )  +  1 ) )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
3834, 36, 37syl2an 494 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
39 oveq1 6657 . . . . . . . . . . 11  |-  ( P  =  ( ( 2  x.  n )  +  1 )  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4039eqcoms 2630 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4140adantl 482 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( ( ( 2  x.  n )  +  1 )  -  1 ) )
42 2nn0 11309 . . . . . . . . . . . . . 14  |-  2  e.  NN0
4342a1i 11 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  2  e. 
NN0 )
44 id 22 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
4543, 44nn0mulcld 11356 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e. 
NN0 )
4645nn0cnd 11353 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e.  CC )
47 pncan1 10454 . . . . . . . . . . 11  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
4846, 47syl 17 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( ( 2  x.  n
)  +  1 )  -  1 )  =  ( 2  x.  n
) )
4948ad2antlr 763 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( ( 2  x.  n )  +  1 )  - 
1 )  =  ( 2  x.  n ) )
5041, 49eqtrd 2656 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( 2  x.  n ) )
5150oveq1d 6665 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  ( ( 2  x.  n
)  /  2 ) )
52 nn0cn 11302 . . . . . . . . 9  |-  ( n  e.  NN0  ->  n  e.  CC )
53 2cnd 11093 . . . . . . . . 9  |-  ( n  e.  NN0  ->  2  e.  CC )
54 2ne0 11113 . . . . . . . . . 10  |-  2  =/=  0
5554a1i 11 . . . . . . . . 9  |-  ( n  e.  NN0  ->  2  =/=  0 )
5652, 53, 55divcan3d 10806 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( ( 2  x.  n )  /  2 )  =  n )
5756ad2antlr 763 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( 2  x.  n )  / 
2 )  =  n )
5851, 57eqtrd 2656 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  n )
5932, 38, 583brtr4d 4685 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  <_  (
( P  -  1 )  /  2 ) )
6059ex 450 . . . 4  |-  ( ( P  e.  Prime  /\  n  e.  NN0 )  ->  (
( ( 2  x.  n )  +  1 )  =  P  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) ) )
6160rexlimdva 3031 . . 3  |-  ( P  e.  Prime  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  P  ->  ( |_ `  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
624, 61sylbid 230 . 2  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) ) )
6362imp 445 1  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   NN0cn0 11292   ZZcz 11377   |_cfl 12591    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-dvds 14984  df-prm 15386
This theorem is referenced by:  2lgslem1  25119
  Copyright terms: Public domain W3C validator