MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv1 Structured version   Visualization version   Unicode version

Theorem lediv1 10888
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
lediv1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( A  /  C )  <_  ( B  /  C ) ) )

Proof of Theorem lediv1
StepHypRef Expression
1 ltdiv1 10887 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  <  A  <->  ( B  /  C )  <  ( A  /  C ) ) )
213com12 1269 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  <  A  <->  ( B  /  C )  <  ( A  /  C ) ) )
32notbid 308 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( -.  B  < 
A  <->  -.  ( B  /  C )  <  ( A  /  C ) ) )
4 lenlt 10116 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
543adant3 1081 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
6 gt0ne0 10493 . . . . . . 7  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
763adant1 1079 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
8 redivcl 10744 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  C  =/=  0 )  ->  ( A  /  C )  e.  RR )
97, 8syld3an3 1371 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  ( A  /  C )  e.  RR )
1093expb 1266 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  /  C )  e.  RR )
11103adant2 1080 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  /  C
)  e.  RR )
1263adant1 1079 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
13 redivcl 10744 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  C  =/=  0 )  ->  ( B  /  C )  e.  RR )
1412, 13syld3an3 1371 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  ( B  /  C )  e.  RR )
15143expb 1266 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( B  /  C )  e.  RR )
16153adant1 1079 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  /  C
)  e.  RR )
1711, 16lenltd 10183 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <_  ( B  /  C )  <->  -.  ( B  /  C )  < 
( A  /  C
) ) )
183, 5, 173bitr4d 300 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( A  /  C )  <_  ( B  /  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  ge0div  10890  ledivmul  10899  lediv23  10915  lediv1d  11918  icccntr  12312  fldiv4lem1div2uz2  12637  quoremz  12654  quoremnn0ALT  12656  sin01bnd  14915  cos01bnd  14916  sin02gt0  14922  hashdvds  15480  ovolscalem1  23281  dyadf  23359  dyadovol  23361  dyadmaxlem  23365  mbfi1fseqlem6  23487  cosordlem  24277  cxpcn3lem  24488  dvdsflf1o  24913  ppiub  24929  logfacrlim  24949  bposlem5  25013  gausslemma2dlem1a  25090  gausslemma2dlem3  25093  lgseisenlem1  25100  2lgslem1c  25118  vmadivsum  25171  mulog2sumlem2  25224  logdivbnd  25245  cdj1i  29292  taupilem1  33167  cos2h  33400  heiborlem8  33617  reglogleb  37456  areaquad  37802  stoweidlem1  40218  stoweidlem11  40228  stoweidlem14  40231  flnn0div2ge  42327
  Copyright terms: Public domain W3C validator