MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsshft Structured version   Visualization version   Unicode version

Theorem bitsshft 15197
Description: Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsshft  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  { n  e.  NN0  |  ( n  -  N
)  e.  (bits `  A ) }  =  (bits `  ( A  x.  ( 2 ^ N
) ) ) )
Distinct variable groups:    A, n    n, N

Proof of Theorem bitsshft
StepHypRef Expression
1 bitsss 15148 . . 3  |-  (bits `  ( A  x.  (
2 ^ N ) ) )  C_  NN0
2 sseqin2 3817 . . 3  |-  ( (bits `  ( A  x.  (
2 ^ N ) ) )  C_  NN0  <->  ( NN0  i^i  (bits `  ( A  x.  ( 2 ^ N
) ) ) )  =  (bits `  ( A  x.  ( 2 ^ N ) ) ) )
31, 2mpbi 220 . 2  |-  ( NN0 
i^i  (bits `  ( A  x.  ( 2 ^ N
) ) ) )  =  (bits `  ( A  x.  ( 2 ^ N ) ) )
4 simpll 790 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  A  e.  ZZ )
5 2nn 11185 . . . . . . . . . . 11  |-  2  e.  NN
65a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  2  e.  NN )
7 simplr 792 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  N  e.  NN0 )
86, 7nnexpcld 13030 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( 2 ^ N )  e.  NN )
98nnzd 11481 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( 2 ^ N )  e.  ZZ )
10 dvdsmul2 15004 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( 2 ^ N
)  e.  ZZ )  ->  ( 2 ^ N )  ||  ( A  x.  ( 2 ^ N ) ) )
114, 9, 10syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( 2 ^ N )  ||  ( A  x.  ( 2 ^ N ) ) )
124, 9zmulcld 11488 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( A  x.  ( 2 ^ N
) )  e.  ZZ )
13 bitsuz 15196 . . . . . . . 8  |-  ( ( ( A  x.  (
2 ^ N ) )  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( 2 ^ N )  ||  ( A  x.  ( 2 ^ N ) )  <-> 
(bits `  ( A  x.  ( 2 ^ N
) ) )  C_  ( ZZ>= `  N )
) )
1412, 7, 13syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( ( 2 ^ N )  ||  ( A  x.  (
2 ^ N ) )  <->  (bits `  ( A  x.  ( 2 ^ N
) ) )  C_  ( ZZ>= `  N )
) )
1511, 14mpbid 222 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  (bits `  ( A  x.  ( 2 ^ N ) ) )  C_  ( ZZ>= `  N ) )
1615sseld 3602 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( n  e.  (bits `  ( A  x.  ( 2 ^ N
) ) )  ->  n  e.  ( ZZ>= `  N ) ) )
17 uznn0sub 11719 . . . . 5  |-  ( n  e.  ( ZZ>= `  N
)  ->  ( n  -  N )  e.  NN0 )
1816, 17syl6 35 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( n  e.  (bits `  ( A  x.  ( 2 ^ N
) ) )  -> 
( n  -  N
)  e.  NN0 )
)
19 bitsss 15148 . . . . . 6  |-  (bits `  A )  C_  NN0
2019a1i 11 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  (bits `  A
)  C_  NN0 )
2120sseld 3602 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( ( n  -  N )  e.  (bits `  A )  ->  ( n  -  N
)  e.  NN0 )
)
22 2cnd 11093 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  2  e.  CC )
235a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  2  e.  NN )
2423nnne0d 11065 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  2  =/=  0 )
25 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  N  e.  NN0 )
2625nn0zd 11480 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  N  e.  ZZ )
27 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  n  e.  NN0 )
2827nn0zd 11480 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  n  e.  ZZ )
2922, 24, 26, 28expsubd 13019 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( 2 ^ ( n  -  N ) )  =  ( ( 2 ^ n )  /  (
2 ^ N ) ) )
3029oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( A  /  ( 2 ^ ( n  -  N
) ) )  =  ( A  /  (
( 2 ^ n
)  /  ( 2 ^ N ) ) ) )
31 simpl 473 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  ZZ )
3231zcnd 11483 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  CC )
3332adantr 481 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  A  e.  CC )
3423, 27nnexpcld 13030 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( 2 ^ n )  e.  NN )
3534nncnd 11036 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( 2 ^ n )  e.  CC )
3623, 25nnexpcld 13030 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( 2 ^ N )  e.  NN )
3736nncnd 11036 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( 2 ^ N )  e.  CC )
3834nnne0d 11065 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( 2 ^ n )  =/=  0 )
3936nnne0d 11065 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( 2 ^ N )  =/=  0 )
4033, 35, 37, 38, 39divdiv2d 10833 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( A  /  ( ( 2 ^ n )  / 
( 2 ^ N
) ) )  =  ( ( A  x.  ( 2 ^ N
) )  /  (
2 ^ n ) ) )
4130, 40eqtr2d 2657 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( ( A  x.  ( 2 ^ N ) )  /  ( 2 ^ n ) )  =  ( A  /  (
2 ^ ( n  -  N ) ) ) )
4241fveq2d 6195 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( |_ `  ( ( A  x.  ( 2 ^ N
) )  /  (
2 ^ n ) ) )  =  ( |_ `  ( A  /  ( 2 ^ ( n  -  N
) ) ) ) )
4342breq2d 4665 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( 2 
||  ( |_ `  ( ( A  x.  ( 2 ^ N
) )  /  (
2 ^ n ) ) )  <->  2  ||  ( |_ `  ( A  /  ( 2 ^ ( n  -  N
) ) ) ) ) )
4443notbid 308 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( -.  2  ||  ( |_ `  ( ( A  x.  ( 2 ^ N
) )  /  (
2 ^ n ) ) )  <->  -.  2  ||  ( |_ `  ( A  /  ( 2 ^ ( n  -  N
) ) ) ) ) )
4512adantrr 753 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( A  x.  ( 2 ^ N
) )  e.  ZZ )
46 bitsval2 15147 . . . . . . 7  |-  ( ( ( A  x.  (
2 ^ N ) )  e.  ZZ  /\  n  e.  NN0 )  -> 
( n  e.  (bits `  ( A  x.  (
2 ^ N ) ) )  <->  -.  2  ||  ( |_ `  (
( A  x.  (
2 ^ N ) )  /  ( 2 ^ n ) ) ) ) )
4745, 27, 46syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( n  e.  (bits `  ( A  x.  ( 2 ^ N
) ) )  <->  -.  2  ||  ( |_ `  (
( A  x.  (
2 ^ N ) )  /  ( 2 ^ n ) ) ) ) )
48 bitsval2 15147 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  -  N
)  e.  NN0 )  ->  ( ( n  -  N )  e.  (bits `  A )  <->  -.  2  ||  ( |_ `  ( A  /  ( 2 ^ ( n  -  N
) ) ) ) ) )
4948ad2ant2rl 785 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( (
n  -  N )  e.  (bits `  A
)  <->  -.  2  ||  ( |_ `  ( A  /  ( 2 ^ ( n  -  N
) ) ) ) ) )
5044, 47, 493bitr4d 300 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  ( n  e.  NN0  /\  ( n  -  N
)  e.  NN0 )
)  ->  ( n  e.  (bits `  ( A  x.  ( 2 ^ N
) ) )  <->  ( n  -  N )  e.  (bits `  A ) ) )
5150expr 643 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( ( n  -  N )  e. 
NN0  ->  ( n  e.  (bits `  ( A  x.  ( 2 ^ N
) ) )  <->  ( n  -  N )  e.  (bits `  A ) ) ) )
5218, 21, 51pm5.21ndd 369 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  ( n  e.  (bits `  ( A  x.  ( 2 ^ N
) ) )  <->  ( n  -  N )  e.  (bits `  A ) ) )
5352rabbi2dva 3821 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( NN0  i^i  (bits `  ( A  x.  (
2 ^ N ) ) ) )  =  { n  e.  NN0  |  ( n  -  N
)  e.  (bits `  A ) } )
543, 53syl5reqr 2671 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  { n  e.  NN0  |  ( n  -  N
)  e.  (bits `  A ) }  =  (bits `  ( A  x.  ( 2 ^ N
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    i^i cin 3573    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   |_cfl 12591   ^cexp 12860    || cdvds 14983  bitscbits 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173
This theorem is referenced by:  smumullem  15214
  Copyright terms: Public domain W3C validator