MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arisum Structured version   Visualization version   Unicode version

Theorem arisum 14592
Description: Arithmetic series sum of the first  N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
Distinct variable group:    k, N

Proof of Theorem arisum
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 elnn0 11294 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 1zzd 11408 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  ZZ )
3 nnz 11399 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
4 elfzelz 12342 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  k  e.  ZZ )
54zcnd 11483 . . . . . . 7  |-  ( k  e.  ( 1 ... N )  ->  k  e.  CC )
65adantl 482 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... N ) )  ->  k  e.  CC )
7 id 22 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  k  =  ( j  +  1 ) )
82, 2, 3, 6, 7fsumshftm 14513 . . . . 5  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ j  e.  ( (
1  -  1 ) ... ( N  - 
1 ) ) ( j  +  1 ) )
9 1m1e0 11089 . . . . . . 7  |-  ( 1  -  1 )  =  0
109oveq1i 6660 . . . . . 6  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
1110sumeq1i 14428 . . . . 5  |-  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( j  +  1 )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( j  +  1 )
128, 11syl6eq 2672 . . . 4  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( j  +  1 ) )
13 elfznn0 12433 . . . . . . . . 9  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  j  e.  NN0 )
1413adantl 482 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  j  e.  NN0 )
15 bcnp1n 13101 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( ( j  +  1 )  _C  j )  =  ( j  +  1 ) )
1614, 15syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( j  +  1 )  _C  j )  =  ( j  +  1 ) )
1714nn0cnd 11353 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  j  e.  CC )
18 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
19 addcom 10222 . . . . . . . . 9  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( j  +  1 )  =  ( 1  +  j ) )
2017, 18, 19sylancl 694 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( j  +  1 )  =  ( 1  +  j ) )
2120oveq1d 6665 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( j  +  1 )  _C  j )  =  ( ( 1  +  j )  _C  j ) )
2216, 21eqtr3d 2658 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( j  +  1 )  =  ( ( 1  +  j )  _C  j ) )
2322sumeq2dv 14433 . . . . 5  |-  ( N  e.  NN  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( j  +  1 )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( 1  +  j )  _C  j ) )
24 1nn0 11308 . . . . . 6  |-  1  e.  NN0
25 nnm1nn0 11334 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
26 bcxmas 14567 . . . . . 6  |-  ( ( 1  e.  NN0  /\  ( N  -  1
)  e.  NN0 )  ->  ( ( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  +  j )  _C  j ) )
2724, 25, 26sylancr 695 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  +  j )  _C  j
) )
2823, 27eqtr4d 2659 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( j  +  1 )  =  ( ( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) ) )
29 1cnd 10056 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  CC )
30 nncn 11028 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
3129, 29, 30ppncand 10432 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  +  1 )  +  ( N  -  1 ) )  =  ( 1  +  N ) )
32 addcom 10222 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  +  N
)  =  ( N  +  1 ) )
3318, 30, 32sylancr 695 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  +  N )  =  ( N  + 
1 ) )
3431, 33eqtrd 2656 . . . . . 6  |-  ( N  e.  NN  ->  (
( 1  +  1 )  +  ( N  -  1 ) )  =  ( N  + 
1 ) )
3534oveq1d 6665 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  ( ( N  +  1 )  _C  ( N  -  1 ) ) )
36 nnnn0 11299 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
37 bcp1m1 13107 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  - 
1 ) )  =  ( ( ( N  +  1 )  x.  N )  /  2
) )
3836, 37syl 17 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  _C  ( N  -  1 ) )  =  ( ( ( N  +  1 )  x.  N )  / 
2 ) )
3930, 29, 30adddird 10065 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  =  ( ( N  x.  N )  +  ( 1  x.  N
) ) )
40 sqval 12922 . . . . . . . . . 10  |-  ( N  e.  CC  ->  ( N ^ 2 )  =  ( N  x.  N
) )
4140eqcomd 2628 . . . . . . . . 9  |-  ( N  e.  CC  ->  ( N  x.  N )  =  ( N ^
2 ) )
42 mulid2 10038 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
1  x.  N )  =  N )
4341, 42oveq12d 6668 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  x.  N
)  +  ( 1  x.  N ) )  =  ( ( N ^ 2 )  +  N ) )
4430, 43syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  x.  N
)  +  ( 1  x.  N ) )  =  ( ( N ^ 2 )  +  N ) )
4539, 44eqtrd 2656 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  =  ( ( N ^ 2 )  +  N ) )
4645oveq1d 6665 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  N
)  /  2 )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
4735, 38, 463eqtrd 2660 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
4812, 28, 473eqtrd 2660 . . 3  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
49 oveq2 6658 . . . . . . 7  |-  ( N  =  0  ->  (
1 ... N )  =  ( 1 ... 0
) )
50 fz10 12362 . . . . . . 7  |-  ( 1 ... 0 )  =  (/)
5149, 50syl6eq 2672 . . . . . 6  |-  ( N  =  0  ->  (
1 ... N )  =  (/) )
5251sumeq1d 14431 . . . . 5  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ k  e.  (/)  k )
53 sum0 14452 . . . . 5  |-  sum_ k  e.  (/)  k  =  0
5452, 53syl6eq 2672 . . . 4  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  0 )
55 sq0i 12956 . . . . . . . 8  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
56 id 22 . . . . . . . 8  |-  ( N  =  0  ->  N  =  0 )
5755, 56oveq12d 6668 . . . . . . 7  |-  ( N  =  0  ->  (
( N ^ 2 )  +  N )  =  ( 0  +  0 ) )
58 00id 10211 . . . . . . 7  |-  ( 0  +  0 )  =  0
5957, 58syl6eq 2672 . . . . . 6  |-  ( N  =  0  ->  (
( N ^ 2 )  +  N )  =  0 )
6059oveq1d 6665 . . . . 5  |-  ( N  =  0  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  ( 0  / 
2 ) )
61 2cn 11091 . . . . . 6  |-  2  e.  CC
62 2ne0 11113 . . . . . 6  |-  2  =/=  0
6361, 62div0i 10759 . . . . 5  |-  ( 0  /  2 )  =  0
6460, 63syl6eq 2672 . . . 4  |-  ( N  =  0  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  0 )
6554, 64eqtr4d 2659 . . 3  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
6648, 65jaoi 394 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  sum_ k  e.  ( 1 ... N ) k  =  ( ( ( N ^ 2 )  +  N )  /  2 ) )
671, 66sylbi 207 1  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ...cfz 12326   ^cexp 12860    _C cbc 13089   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  arisum2  14593
  Copyright terms: Public domain W3C validator