![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumeq1i | Structured version Visualization version Unicode version |
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
Ref | Expression |
---|---|
sumeq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sumeq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sumeq1 14419 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-sum 14417 |
This theorem is referenced by: sumeq12i 14430 fsump1i 14500 fsum2d 14502 fsumxp 14503 isumnn0nn 14574 arisum 14592 arisum2 14593 geo2sum 14604 bpoly0 14781 bpoly1 14782 bpoly2 14788 bpoly3 14789 bpoly4 14790 efsep 14840 ef4p 14843 rpnnen2lem12 14954 ovolicc2lem4 23288 itg10 23455 dveflem 23742 dvply1 24039 vieta1lem2 24066 aaliou3lem4 24101 dvtaylp 24124 pserdvlem2 24182 advlogexp 24401 log2ublem2 24674 log2ublem3 24675 log2ub 24676 ftalem5 24803 cht1 24891 1sgmprm 24924 lgsquadlem2 25106 axlowdimlem16 25837 finsumvtxdg2ssteplem4 26444 rusgrnumwwlks 26869 signsvf0 30657 signsvf1 30658 repr0 30689 k0004val0 38452 binomcxplemnotnn0 38555 fsumiunss 39807 dvnmul 40158 stoweidlem17 40234 dirkertrigeqlem1 40315 etransclem24 40475 etransclem35 40486 |
Copyright terms: Public domain | W3C validator |