MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfi Structured version   Visualization version   Unicode version

Theorem bitsfi 15159
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfi  |-  ( N  e.  NN0  ->  (bits `  N )  e.  Fin )

Proof of Theorem bitsfi
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nn0re 11301 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
2 2re 11090 . . . 4  |-  2  e.  RR
32a1i 11 . . 3  |-  ( N  e.  NN0  ->  2  e.  RR )
4 1lt2 11194 . . . 4  |-  1  <  2
54a1i 11 . . 3  |-  ( N  e.  NN0  ->  1  <  2 )
6 expnbnd 12993 . . 3  |-  ( ( N  e.  RR  /\  2  e.  RR  /\  1  <  2 )  ->  E. m  e.  NN  N  <  (
2 ^ m ) )
71, 3, 5, 6syl3anc 1326 . 2  |-  ( N  e.  NN0  ->  E. m  e.  NN  N  <  (
2 ^ m ) )
8 fzofi 12773 . . 3  |-  ( 0..^ m )  e.  Fin
9 simpl 473 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  NN0 )
10 nn0uz 11722 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
119, 10syl6eleq 2711 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
12 2nn 11185 . . . . . . . 8  |-  2  e.  NN
1312a1i 11 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  2  e.  NN )
14 simprl 794 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  m  e.  NN )
1514nnnn0d 11351 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  m  e.  NN0 )
1613, 15nnexpcld 13030 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( 2 ^ m )  e.  NN )
1716nnzd 11481 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( 2 ^ m )  e.  ZZ )
18 simprr 796 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  <  ( 2 ^ m ) )
19 elfzo2 12473 . . . . 5  |-  ( N  e.  ( 0..^ ( 2 ^ m ) )  <->  ( N  e.  ( ZZ>= `  0 )  /\  ( 2 ^ m
)  e.  ZZ  /\  N  <  ( 2 ^ m ) ) )
2011, 17, 18, 19syl3anbrc 1246 . . . 4  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ( 0..^ ( 2 ^ m ) ) )
219nn0zd 11480 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ZZ )
22 bitsfzo 15157 . . . . 5  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( N  e.  ( 0..^ ( 2 ^ m ) )  <->  (bits `  N
)  C_  ( 0..^ m ) ) )
2321, 15, 22syl2anc 693 . . . 4  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( N  e.  ( 0..^ ( 2 ^ m ) )  <-> 
(bits `  N )  C_  ( 0..^ m ) ) )
2420, 23mpbid 222 . . 3  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  (bits `  N
)  C_  ( 0..^ m ) )
25 ssfi 8180 . . 3  |-  ( ( ( 0..^ m )  e.  Fin  /\  (bits `  N )  C_  (
0..^ m ) )  ->  (bits `  N
)  e.  Fin )
268, 24, 25sylancr 695 . 2  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  (bits `  N
)  e.  Fin )
277, 26rexlimddv 3035 1  |-  ( N  e.  NN0  ->  (bits `  N )  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687  ..^cfzo 12465   ^cexp 12860  bitscbits 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-dvds 14984  df-bits 15144
This theorem is referenced by:  bitsinv2  15165  bitsf1ocnv  15166  bitsf1  15168  eulerpartlemgc  30424  eulerpartlemgs2  30442
  Copyright terms: Public domain W3C validator