MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1termlem Structured version   Visualization version   Unicode version

Theorem coe1termlem 24014
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
coe1term.1  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
Assertion
Ref Expression
coe1termlem  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( (coeff `  F
)  =  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )  /\  ( A  =/=  0  ->  (deg `  F )  =  N ) ) )
Distinct variable groups:    z, n, A    n, N, z
Allowed substitution hints:    F( z, n)

Proof of Theorem coe1termlem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . . . 4  |-  CC  C_  CC
2 coe1term.1 . . . . 5  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
32ply1term 23960 . . . 4  |-  ( ( CC  C_  CC  /\  A  e.  CC  /\  N  e. 
NN0 )  ->  F  e.  (Poly `  CC )
)
41, 3mp3an1 1411 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  e.  (Poly `  CC ) )
5 simpr 477 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  NN0 )
6 simpl 473 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A  e.  CC )
7 0cn 10032 . . . . . 6  |-  0  e.  CC
8 ifcl 4130 . . . . . 6  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  if ( n  =  N ,  A , 
0 )  e.  CC )
96, 7, 8sylancl 694 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  if ( n  =  N ,  A ,  0 )  e.  CC )
109adantr 481 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  if ( n  =  N ,  A ,  0 )  e.  CC )
11 eqid 2622 . . . 4  |-  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )  =  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )
1210, 11fmptd 6385 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) : NN0 --> CC )
13 simpr 477 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
14 ifcl 4130 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  if ( k  =  N ,  A , 
0 )  e.  CC )
156, 7, 14sylancl 694 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  if ( k  =  N ,  A ,  0 )  e.  CC )
1615adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  if ( k  =  N ,  A ,  0 )  e.  CC )
17 eqeq1 2626 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  =  N  <->  k  =  N ) )
1817ifbid 4108 . . . . . . . . 9  |-  ( n  =  k  ->  if ( n  =  N ,  A ,  0 )  =  if ( k  =  N ,  A ,  0 ) )
1918, 11fvmptg 6280 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  if ( k  =  N ,  A ,  0 )  e.  CC )  ->  ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =  if ( k  =  N ,  A ,  0 ) )
2013, 16, 19syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =  if ( k  =  N ,  A ,  0 ) )
2120neeq1d 2853 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  <->  if (
k  =  N ,  A ,  0 )  =/=  0 ) )
22 nn0re 11301 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
2322leidd 10594 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  <_  N )
2423ad2antlr 763 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  N  <_  N
)
25 iffalse 4095 . . . . . . . . 9  |-  ( -.  k  =  N  ->  if ( k  =  N ,  A ,  0 )  =  0 )
2625necon1ai 2821 . . . . . . . 8  |-  ( if ( k  =  N ,  A ,  0 )  =/=  0  -> 
k  =  N )
2726breq1d 4663 . . . . . . 7  |-  ( if ( k  =  N ,  A ,  0 )  =/=  0  -> 
( k  <_  N  <->  N  <_  N ) )
2824, 27syl5ibrcom 237 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( if ( k  =  N ,  A ,  0 )  =/=  0  ->  k  <_  N ) )
2921, 28sylbid 230 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
3029ralrimiva 2966 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A. k  e.  NN0  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
31 plyco0 23948 . . . . 5  |-  ( ( N  e.  NN0  /\  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) : NN0 --> CC )  ->  ( (
( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) ) )
325, 12, 31syl2anc 693 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) ) )
3330, 32mpbird 247 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) )
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )
342ply1termlem 23959 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) ) )
35 elfznn0 12433 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
3620oveq1d 6665 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  =  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) )
3735, 36sylan2 491 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  =  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) )
3837sumeq2dv 14433 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) )
3938mpteq2dv 4745 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) ) )
4034, 39eqtr4d 2659 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) ) ) )
414, 5, 12, 33, 40coeeq 23983 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
(coeff `  F )  =  ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) )
424adantr 481 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  F  e.  (Poly `  CC ) )
435adantr 481 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  N  e.  NN0 )
4412adantr 481 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) : NN0 --> CC )
4533adantr 481 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  ( (
n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 } )
4640adantr 481 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) ) ) )
47 iftrue 4092 . . . . . . . 8  |-  ( n  =  N  ->  if ( n  =  N ,  A ,  0 )  =  A )
4847, 11fvmptg 6280 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  CC )  ->  ( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 N )  =  A )
4948ancoms 469 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 N )  =  A )
5049neeq1d 2853 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  N )  =/=  0  <->  A  =/=  0 ) )
5150biimpar 502 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  ( (
n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  N )  =/=  0 )
5242, 43, 44, 45, 46, 51dgreq 24000 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  (deg `  F
)  =  N )
5352ex 450 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A  =/=  0  ->  (deg `  F )  =  N ) )
5441, 53jca 554 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( (coeff `  F
)  =  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )  /\  ( A  =/=  0  ->  (deg `  F )  =  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  coe1term  24015  dgr1term  24016
  Copyright terms: Public domain W3C validator