MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmataa0 Structured version   Visualization version   Unicode version

Theorem decpmataa0 20573
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmate.p  |-  P  =  (Poly1 `  R )
decpmate.c  |-  C  =  ( N Mat  P )
decpmate.b  |-  B  =  ( Base `  C
)
decpmatcl.a  |-  A  =  ( N Mat  R )
decpmatfsupp.0  |-  .0.  =  ( 0g `  A )
Assertion
Ref Expression
decpmataa0  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  ( M decompPMat  x )  =  .0.  )
)
Distinct variable groups:    B, s, x    M, s, x    N, s, x    R, s, x    .0. , s, x
Allowed substitution hints:    A( x, s)    C( x, s)    P( x, s)

Proof of Theorem decpmataa0
Dummy variables  i 
j  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmate.c . . . . . 6  |-  C  =  ( N Mat  P )
2 decpmate.b . . . . . 6  |-  B  =  ( Base `  C
)
31, 2matrcl 20218 . . . . 5  |-  ( M  e.  B  ->  ( N  e.  Fin  /\  P  e.  _V ) )
43simpld 475 . . . 4  |-  ( M  e.  B  ->  N  e.  Fin )
54adantl 482 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  N  e.  Fin )
6 simpl 473 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  R  e.  Ring )
7 simpr 477 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  M  e.  B )
8 decpmate.p . . . 4  |-  P  =  (Poly1 `  R )
9 eqid 2622 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
108, 1, 2, 9pmatcoe1fsupp 20506 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  ( 0g
`  R ) ) )
115, 6, 7, 10syl3anc 1326 . 2  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  ( 0g
`  R ) ) )
12 decpmatcl.a . . . . . . . . 9  |-  A  =  ( N Mat  R )
13 eqid 2622 . . . . . . . . 9  |-  ( Base `  A )  =  (
Base `  A )
148, 1, 2, 12, 13decpmatcl 20572 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  M  e.  B  /\  x  e.  NN0 )  ->  ( M decompPMat  x )  e.  (
Base `  A )
)
15143expa 1265 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( M decompPMat  x )  e.  ( Base `  A
) )
165, 6jca 554 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( N  e.  Fin  /\  R  e.  Ring ) )
1712matring 20249 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  Ring )
18 decpmatfsupp.0 . . . . . . . . . 10  |-  .0.  =  ( 0g `  A )
1913, 18ring0cl 18569 . . . . . . . . 9  |-  ( A  e.  Ring  ->  .0.  e.  ( Base `  A )
)
2016, 17, 193syl 18 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  .0.  e.  ( Base `  A
) )
2120adantr 481 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  .0.  e.  ( Base `  A ) )
2212, 13eqmat 20230 . . . . . . 7  |-  ( ( ( M decompPMat  x )  e.  ( Base `  A
)  /\  .0.  e.  ( Base `  A )
)  ->  ( ( M decompPMat  x )  =  .0.  <->  A. i  e.  N  A. j  e.  N  (
i ( M decompPMat  x ) j )  =  ( i  .0.  j ) ) )
2315, 21, 22syl2anc 693 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( ( M decompPMat  x )  =  .0.  <->  A. i  e.  N  A. j  e.  N  (
i ( M decompPMat  x ) j )  =  ( i  .0.  j ) ) )
24 df-3an 1039 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  M  e.  B  /\  x  e.  NN0 )  <->  ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 ) )
258, 1, 2decpmate 20571 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  M  e.  B  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
i ( M decompPMat  x ) j )  =  ( (coe1 `  ( i M j ) ) `  x ) )
2624, 25sylanbr 490 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( i ( M decompPMat  x ) j )  =  ( (coe1 `  (
i M j ) ) `  x ) )
2716adantr 481 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( N  e. 
Fin  /\  R  e.  Ring ) )
2827adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( N  e.  Fin  /\  R  e.  Ring )
)
2912, 9mat0op 20225 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( 0g `  A
)  =  ( a  e.  N ,  b  e.  N  |->  ( 0g
`  R ) ) )
3018, 29syl5eq 2668 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  .0.  =  ( a  e.  N ,  b  e.  N  |->  ( 0g `  R ) ) )
3128, 30syl 17 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  ->  .0.  =  ( a  e.  N ,  b  e.  N  |->  ( 0g `  R ) ) )
32 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( a  =  i  /\  b  =  j ) )  ->  ( 0g `  R )  =  ( 0g `  R ) )
33 simpl 473 . . . . . . . . . 10  |-  ( ( i  e.  N  /\  j  e.  N )  ->  i  e.  N )
3433adantl 482 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
i  e.  N )
35 simpr 477 . . . . . . . . . 10  |-  ( ( i  e.  N  /\  j  e.  N )  ->  j  e.  N )
3635adantl 482 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
j  e.  N )
37 fvexd 6203 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( 0g `  R
)  e.  _V )
3831, 32, 34, 36, 37ovmpt2d 6788 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( i  .0.  j
)  =  ( 0g
`  R ) )
3926, 38eqeq12d 2637 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  M  e.  B
)  /\  x  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( ( i ( M decompPMat  x ) j )  =  ( i  .0.  j )  <->  ( (coe1 `  ( i M j ) ) `  x
)  =  ( 0g
`  R ) ) )
40392ralbidva 2988 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( A. i  e.  N  A. j  e.  N  ( i
( M decompPMat  x ) j )  =  ( i  .0.  j )  <->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  ( 0g
`  R ) ) )
4123, 40bitrd 268 . . . . 5  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( ( M decompPMat  x )  =  .0.  <->  A. i  e.  N  A. j  e.  N  (
(coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R ) ) )
4241imbi2d 330 . . . 4  |-  ( ( ( R  e.  Ring  /\  M  e.  B )  /\  x  e.  NN0 )  ->  ( ( s  <  x  ->  ( M decompPMat  x )  =  .0.  )  <->  ( s  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  ( 0g
`  R ) ) ) )
4342ralbidva 2985 . . 3  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( A. x  e.  NN0  ( s  <  x  ->  ( M decompPMat  x )  =  .0.  )  <->  A. x  e.  NN0  ( s  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  ( 0g
`  R ) ) ) )
4443rexbidv 3052 . 2  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  ( E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  ( M decompPMat  x )  =  .0.  )  <->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  A. i  e.  N  A. j  e.  N  (
(coe1 `  ( i M j ) ) `  x )  =  ( 0g `  R ) ) ) )
4511, 44mpbird 247 1  |-  ( ( R  e.  Ring  /\  M  e.  B )  ->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  ( M decompPMat  x )  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955    < clt 10074   NN0cn0 11292   Basecbs 15857   0gc0g 16100   Ringcrg 18547  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213   decompPMat cdecpmat 20567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-decpmat 20568
This theorem is referenced by:  decpmatfsupp  20574  pmatcollpwfi  20587
  Copyright terms: Public domain W3C validator