MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit Structured version   Visualization version   Unicode version

Theorem dmdprdsplit 18446
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dprdsplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdsplit.u  |-  ( ph  ->  I  =  ( C  u.  D ) )
dmdprdsplit.z  |-  Z  =  (Cntz `  G )
dmdprdsplit.0  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
dmdprdsplit  |-  ( ph  ->  ( G dom DProd  S  <->  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) ) )

Proof of Theorem dmdprdsplit
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( (
ph  /\  G dom DProd  S )  ->  G dom DProd  S )
2 dprdsplit.2 . . . . . . . 8  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
3 fdm 6051 . . . . . . . 8  |-  ( S : I --> (SubGrp `  G )  ->  dom  S  =  I )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  dom  S  =  I )
54adantr 481 . . . . . 6  |-  ( (
ph  /\  G dom DProd  S )  ->  dom  S  =  I )
6 ssun1 3776 . . . . . . 7  |-  C  C_  ( C  u.  D
)
7 dprdsplit.u . . . . . . . 8  |-  ( ph  ->  I  =  ( C  u.  D ) )
87adantr 481 . . . . . . 7  |-  ( (
ph  /\  G dom DProd  S )  ->  I  =  ( C  u.  D
) )
96, 8syl5sseqr 3654 . . . . . 6  |-  ( (
ph  /\  G dom DProd  S )  ->  C  C_  I
)
101, 5, 9dprdres 18427 . . . . 5  |-  ( (
ph  /\  G dom DProd  S )  ->  ( G dom DProd  ( S  |`  C )  /\  ( G DProd  ( S  |`  C ) ) 
C_  ( G DProd  S
) ) )
1110simpld 475 . . . 4  |-  ( (
ph  /\  G dom DProd  S )  ->  G dom DProd  ( S  |`  C )
)
12 ssun2 3777 . . . . . . 7  |-  D  C_  ( C  u.  D
)
1312, 8syl5sseqr 3654 . . . . . 6  |-  ( (
ph  /\  G dom DProd  S )  ->  D  C_  I
)
141, 5, 13dprdres 18427 . . . . 5  |-  ( (
ph  /\  G dom DProd  S )  ->  ( G dom DProd  ( S  |`  D )  /\  ( G DProd  ( S  |`  D ) ) 
C_  ( G DProd  S
) ) )
1514simpld 475 . . . 4  |-  ( (
ph  /\  G dom DProd  S )  ->  G dom DProd  ( S  |`  D )
)
1611, 15jca 554 . . 3  |-  ( (
ph  /\  G dom DProd  S )  ->  ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) ) )
17 dprdsplit.i . . . . 5  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
1817adantr 481 . . . 4  |-  ( (
ph  /\  G dom DProd  S )  ->  ( C  i^i  D )  =  (/) )
19 dmdprdsplit.z . . . 4  |-  Z  =  (Cntz `  G )
201, 5, 9, 13, 18, 19dprdcntz2 18437 . . 3  |-  ( (
ph  /\  G dom DProd  S )  ->  ( G DProd  ( S  |`  C )
)  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
21 dmdprdsplit.0 . . . 4  |-  .0.  =  ( 0g `  G )
221, 5, 9, 13, 18, 21dprddisj2 18438 . . 3  |-  ( (
ph  /\  G dom DProd  S )  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } )
2316, 20, 223jca 1242 . 2  |-  ( (
ph  /\  G dom DProd  S )  ->  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )
242adantr 481 . . 3  |-  ( (
ph  /\  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )  ->  S : I --> (SubGrp `  G ) )
2517adantr 481 . . 3  |-  ( (
ph  /\  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )  -> 
( C  i^i  D
)  =  (/) )
267adantr 481 . . 3  |-  ( (
ph  /\  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )  ->  I  =  ( C  u.  D ) )
27 simpr1l 1118 . . 3  |-  ( (
ph  /\  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )  ->  G dom DProd  ( S  |`  C ) )
28 simpr1r 1119 . . 3  |-  ( (
ph  /\  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )  ->  G dom DProd  ( S  |`  D ) )
29 simpr2 1068 . . 3  |-  ( (
ph  /\  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )  -> 
( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
30 simpr3 1069 . . 3  |-  ( (
ph  /\  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )  -> 
( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
3124, 25, 26, 19, 21, 27, 28, 29, 30dmdprdsplit2 18445 . 2  |-  ( (
ph  /\  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) )  ->  G dom DProd  S )
3223, 31impbida 877 1  |-  ( ph  ->  ( G dom DProd  S  <->  ( ( G dom DProd  ( S  |`  C )  /\  G dom DProd  ( S  |`  D ) )  /\  ( G DProd 
( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) )  /\  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  =  {  .0.  } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   0gc0g 16100  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dprdsplit  18447  dmdprdpr  18448  dpjcntz  18451  dpjdisj  18452
  Copyright terms: Public domain W3C validator