MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2 Structured version   Visualization version   Unicode version

Theorem dmdprdsplit2 18445
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dprdsplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdsplit.u  |-  ( ph  ->  I  =  ( C  u.  D ) )
dmdprdsplit.z  |-  Z  =  (Cntz `  G )
dmdprdsplit.0  |-  .0.  =  ( 0g `  G )
dmdprdsplit2.1  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
dmdprdsplit2.2  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
dmdprdsplit2.3  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
dmdprdsplit2.4  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
Assertion
Ref Expression
dmdprdsplit2  |-  ( ph  ->  G dom DProd  S )

Proof of Theorem dmdprdsplit2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplit.z . 2  |-  Z  =  (Cntz `  G )
2 dmdprdsplit.0 . 2  |-  .0.  =  ( 0g `  G )
3 eqid 2622 . 2  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
4 dmdprdsplit2.1 . . 3  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
5 dprdgrp 18404 . . 3  |-  ( G dom DProd  ( S  |`  C )  ->  G  e.  Grp )
64, 5syl 17 . 2  |-  ( ph  ->  G  e.  Grp )
7 dprdsplit.u . . 3  |-  ( ph  ->  I  =  ( C  u.  D ) )
8 dprdsplit.2 . . . . . . 7  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
9 ssun1 3776 . . . . . . . 8  |-  C  C_  ( C  u.  D
)
109, 7syl5sseqr 3654 . . . . . . 7  |-  ( ph  ->  C  C_  I )
118, 10fssresd 6071 . . . . . 6  |-  ( ph  ->  ( S  |`  C ) : C --> (SubGrp `  G ) )
12 fdm 6051 . . . . . 6  |-  ( ( S  |`  C ) : C --> (SubGrp `  G )  ->  dom  ( S  |`  C )  =  C )
1311, 12syl 17 . . . . 5  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
144, 13dprddomcld 18400 . . . 4  |-  ( ph  ->  C  e.  _V )
15 dmdprdsplit2.2 . . . . 5  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
16 ssun2 3777 . . . . . . . 8  |-  D  C_  ( C  u.  D
)
1716, 7syl5sseqr 3654 . . . . . . 7  |-  ( ph  ->  D  C_  I )
188, 17fssresd 6071 . . . . . 6  |-  ( ph  ->  ( S  |`  D ) : D --> (SubGrp `  G ) )
19 fdm 6051 . . . . . 6  |-  ( ( S  |`  D ) : D --> (SubGrp `  G )  ->  dom  ( S  |`  D )  =  D )
2018, 19syl 17 . . . . 5  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
2115, 20dprddomcld 18400 . . . 4  |-  ( ph  ->  D  e.  _V )
22 unexg 6959 . . . 4  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  ( C  u.  D
)  e.  _V )
2314, 21, 22syl2anc 693 . . 3  |-  ( ph  ->  ( C  u.  D
)  e.  _V )
247, 23eqeltrd 2701 . 2  |-  ( ph  ->  I  e.  _V )
257eleq2d 2687 . . . . 5  |-  ( ph  ->  ( x  e.  I  <->  x  e.  ( C  u.  D ) ) )
26 elun 3753 . . . . 5  |-  ( x  e.  ( C  u.  D )  <->  ( x  e.  C  \/  x  e.  D ) )
2725, 26syl6bb 276 . . . 4  |-  ( ph  ->  ( x  e.  I  <->  ( x  e.  C  \/  x  e.  D )
) )
28 dprdsplit.i . . . . . . . 8  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
29 dmdprdsplit2.3 . . . . . . . 8  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
30 dmdprdsplit2.4 . . . . . . . 8  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
318, 28, 7, 1, 2, 4, 15, 29, 30, 3dmdprdsplit2lem 18444 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  (
( y  e.  I  ->  ( x  =/=  y  ->  ( S `  x
)  C_  ( Z `  ( S `  y
) ) ) )  /\  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )  C_  {  .0.  } ) )
32 incom 3805 . . . . . . . . 9  |-  ( C  i^i  D )  =  ( D  i^i  C
)
3332, 28syl5eqr 2670 . . . . . . . 8  |-  ( ph  ->  ( D  i^i  C
)  =  (/) )
34 uncom 3757 . . . . . . . . 9  |-  ( C  u.  D )  =  ( D  u.  C
)
357, 34syl6eq 2672 . . . . . . . 8  |-  ( ph  ->  I  =  ( D  u.  C ) )
36 dprdsubg 18423 . . . . . . . . . 10  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
374, 36syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )
)
38 dprdsubg 18423 . . . . . . . . . 10  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
3915, 38syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)
401, 37, 39, 29cntzrecd 18091 . . . . . . . 8  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  C_  ( Z `  ( G DProd 
( S  |`  C ) ) ) )
41 incom 3805 . . . . . . . . 9  |-  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  ( ( G DProd 
( S  |`  D ) )  i^i  ( G DProd 
( S  |`  C ) ) )
4241, 30syl5eqr 2670 . . . . . . . 8  |-  ( ph  ->  ( ( G DProd  ( S  |`  D ) )  i^i  ( G DProd  ( S  |`  C ) ) )  =  {  .0.  } )
438, 33, 35, 1, 2, 15, 4, 40, 42, 3dmdprdsplit2lem 18444 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( y  e.  I  ->  ( x  =/=  y  ->  ( S `  x
)  C_  ( Z `  ( S `  y
) ) ) )  /\  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " (
I  \  { x } ) ) ) )  C_  {  .0.  } ) )
4431, 43jaodan 826 . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  \/  x  e.  D ) )  -> 
( ( y  e.  I  ->  ( x  =/=  y  ->  ( S `
 x )  C_  ( Z `  ( S `
 y ) ) ) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  C_  {  .0.  } ) )
4544simpld 475 . . . . 5  |-  ( (
ph  /\  ( x  e.  C  \/  x  e.  D ) )  -> 
( y  e.  I  ->  ( x  =/=  y  ->  ( S `  x
)  C_  ( Z `  ( S `  y
) ) ) ) )
4645ex 450 . . . 4  |-  ( ph  ->  ( ( x  e.  C  \/  x  e.  D )  ->  (
y  e.  I  -> 
( x  =/=  y  ->  ( S `  x
)  C_  ( Z `  ( S `  y
) ) ) ) ) )
4727, 46sylbid 230 . . 3  |-  ( ph  ->  ( x  e.  I  ->  ( y  e.  I  ->  ( x  =/=  y  ->  ( S `  x
)  C_  ( Z `  ( S `  y
) ) ) ) ) )
48473imp2 1282 . 2  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( Z `  ( S `  y
) ) )
4927biimpa 501 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  (
x  e.  C  \/  x  e.  D )
)
5031simprd 479 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  C_  {  .0.  } )
5143simprd 479 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  C_  {  .0.  } )
5250, 51jaodan 826 . . 3  |-  ( (
ph  /\  ( x  e.  C  \/  x  e.  D ) )  -> 
( ( S `  x )  i^i  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( I 
\  { x }
) ) ) ) 
C_  {  .0.  } )
5349, 52syldan 487 . 2  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( I  \  { x } ) ) ) )  C_  {  .0.  } )
541, 2, 3, 6, 24, 8, 48, 53dmdprdd 18398 1  |-  ( ph  ->  G dom DProd  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   class class class wbr 4653   dom cdm 5114    |` cres 5116   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   0gc0g 16100  mrClscmrc 16243   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dmdprdsplit  18446  pgpfaclem1  18480
  Copyright terms: Public domain W3C validator