MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddisj2 Structured version   Visualization version   Unicode version

Theorem dprddisj2 18438
Description: The function  S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dprdcntz2.1  |-  ( ph  ->  G dom DProd  S )
dprdcntz2.2  |-  ( ph  ->  dom  S  =  I )
dprdcntz2.c  |-  ( ph  ->  C  C_  I )
dprdcntz2.d  |-  ( ph  ->  D  C_  I )
dprdcntz2.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprddisj2.0  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
dprddisj2  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )

Proof of Theorem dprddisj2
Dummy variables  f  h  i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . . 6  |-  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) ) 
C_  ( G DProd  ( S  |`  C ) )
2 dprdcntz2.1 . . . . . . . 8  |-  ( ph  ->  G dom DProd  S )
3 dprdcntz2.2 . . . . . . . 8  |-  ( ph  ->  dom  S  =  I )
4 dprdcntz2.c . . . . . . . 8  |-  ( ph  ->  C  C_  I )
52, 3, 4dprdres 18427 . . . . . . 7  |-  ( ph  ->  ( G dom DProd  ( S  |`  C )  /\  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) ) )
65simprd 479 . . . . . 6  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( G DProd  S ) )
71, 6syl5ss 3614 . . . . 5  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  ( G DProd  S ) )
87sseld 3602 . . . 4  |-  ( ph  ->  ( x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  ->  x  e.  ( G DProd  S ) ) )
9 dprddisj2.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
10 eqid 2622 . . . . . . . 8  |-  { h  e.  X_ i  e.  I 
( S `  i
)  |  h finSupp  .0.  }  =  { h  e.  X_ i  e.  I 
( S `  i
)  |  h finSupp  .0.  }
119, 10eldprd 18403 . . . . . . 7  |-  ( dom 
S  =  I  -> 
( x  e.  ( G DProd  S )  <->  ( G dom DProd  S  /\  E. f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } x  =  ( G  gsumg  f ) ) ) )
123, 11syl 17 . . . . . 6  |-  ( ph  ->  ( x  e.  ( G DProd  S )  <->  ( G dom DProd  S  /\  E. f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } x  =  ( G  gsumg  f ) ) ) )
132ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  G dom DProd  S )
143ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  dom  S  =  I )
15 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )
16 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( Base `  G )  =  (
Base `  G )
1710, 13, 14, 15, 16dprdff 18411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  f :
I --> ( Base `  G
) )
1817feqmptd 6249 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  f  =  ( x  e.  I  |->  ( f `  x
) ) )
19 dprdcntz2.i . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
2019difeq2d 3728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( I  \  ( C  i^i  D ) )  =  ( I  \  (/) ) )
21 difindi 3881 . . . . . . . . . . . . . . . . . . . 20  |-  ( I 
\  ( C  i^i  D ) )  =  ( ( I  \  C
)  u.  ( I 
\  D ) )
22 dif0 3950 . . . . . . . . . . . . . . . . . . . 20  |-  ( I 
\  (/) )  =  I
2320, 21, 223eqtr3g 2679 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( I  \  C )  u.  (
I  \  D )
)  =  I )
24 eqimss2 3658 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  \  C
)  u.  ( I 
\  D ) )  =  I  ->  I  C_  ( ( I  \  C )  u.  (
I  \  D )
) )
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  I  C_  ( (
I  \  C )  u.  ( I  \  D
) ) )
2625ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  I  C_  (
( I  \  C
)  u.  ( I 
\  D ) ) )
2726sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I 
( S `  i
)  |  h finSupp  .0.  } )  /\  ( ( G  gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  /\  x  e.  I )  ->  x  e.  ( ( I  \  C )  u.  (
I  \  D )
) )
28 elun 3753 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( I 
\  C )  u.  ( I  \  D
) )  <->  ( x  e.  ( I  \  C
)  \/  x  e.  ( I  \  D
) ) )
2927, 28sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I 
( S `  i
)  |  h finSupp  .0.  } )  /\  ( ( G  gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  /\  x  e.  I )  ->  (
x  e.  ( I 
\  C )  \/  x  e.  ( I 
\  D ) ) )
304ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  C  C_  I
)
31 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  ( G  gsumg  f )  e.  ( G DProd 
( S  |`  C ) ) )
329, 10, 13, 14, 30, 15, 31dmdprdsplitlem 18436 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I 
( S `  i
)  |  h finSupp  .0.  } )  /\  ( ( G  gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  /\  x  e.  ( I  \  C
) )  ->  (
f `  x )  =  .0.  )
33 dprdcntz2.d . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  D  C_  I )
3433ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  D  C_  I
)
35 simprr 796 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  ( G  gsumg  f )  e.  ( G DProd 
( S  |`  D ) ) )
369, 10, 13, 14, 34, 15, 35dmdprdsplitlem 18436 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I 
( S `  i
)  |  h finSupp  .0.  } )  /\  ( ( G  gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  /\  x  e.  ( I  \  D
) )  ->  (
f `  x )  =  .0.  )
3732, 36jaodan 826 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I 
( S `  i
)  |  h finSupp  .0.  } )  /\  ( ( G  gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  /\  ( x  e.  ( I  \  C )  \/  x  e.  ( I  \  D
) ) )  -> 
( f `  x
)  =  .0.  )
3829, 37syldan 487 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I 
( S `  i
)  |  h finSupp  .0.  } )  /\  ( ( G  gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  /\  x  e.  I )  ->  (
f `  x )  =  .0.  )
3938mpteq2dva 4744 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  ( x  e.  I  |->  ( f `
 x ) )  =  ( x  e.  I  |->  .0.  ) )
4018, 39eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  f  =  ( x  e.  I  |->  .0.  ) )
4140oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  ( G  gsumg  f )  =  ( G 
gsumg  ( x  e.  I  |->  .0.  ) ) )
42 dprdgrp 18404 . . . . . . . . . . . . . 14  |-  ( G dom DProd  S  ->  G  e. 
Grp )
43 grpmnd 17429 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  G  e.  Mnd )
442, 42, 433syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Mnd )
452, 3dprddomcld 18400 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  _V )
469gsumz 17374 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  I  e.  _V )  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
4744, 45, 46syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
4847ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  ( G  gsumg  ( x  e.  I  |->  .0.  ) )  =  .0.  )
4941, 48eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  /\  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )  ->  ( G  gsumg  f )  =  .0.  )
5049ex 450 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  ->  (
( ( G  gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) )  ->  ( G  gsumg  f )  =  .0.  )
)
51 eleq1 2689 . . . . . . . . . . 11  |-  ( x  =  ( G  gsumg  f )  ->  ( x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  <->  ( G  gsumg  f )  e.  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) ) ) )
52 elin 3796 . . . . . . . . . . 11  |-  ( ( G  gsumg  f )  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  <-> 
( ( G  gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) )
5351, 52syl6bb 276 . . . . . . . . . 10  |-  ( x  =  ( G  gsumg  f )  ->  ( x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  <->  ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) ) ) )
54 velsn 4193 . . . . . . . . . . 11  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
55 eqeq1 2626 . . . . . . . . . . 11  |-  ( x  =  ( G  gsumg  f )  ->  ( x  =  .0.  <->  ( G  gsumg  f )  =  .0.  ) )
5654, 55syl5bb 272 . . . . . . . . . 10  |-  ( x  =  ( G  gsumg  f )  ->  ( x  e. 
{  .0.  }  <->  ( G  gsumg  f )  =  .0.  )
)
5753, 56imbi12d 334 . . . . . . . . 9  |-  ( x  =  ( G  gsumg  f )  ->  ( ( x  e.  ( ( G DProd 
( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) )  ->  x  e.  {  .0.  } )  <-> 
( ( ( G 
gsumg  f )  e.  ( G DProd  ( S  |`  C ) )  /\  ( G  gsumg  f )  e.  ( G DProd  ( S  |`  D ) ) )  ->  ( G  gsumg  f )  =  .0.  ) ) )
5850, 57syl5ibrcom 237 . . . . . . . 8  |-  ( (
ph  /\  f  e.  { h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } )  ->  (
x  =  ( G 
gsumg  f )  ->  (
x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  ->  x  e.  {  .0.  } ) ) )
5958rexlimdva 3031 . . . . . . 7  |-  ( ph  ->  ( E. f  e. 
{ h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } x  =  ( G  gsumg  f )  ->  ( x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  ->  x  e.  {  .0.  } ) ) )
6059adantld 483 . . . . . 6  |-  ( ph  ->  ( ( G dom DProd  S  /\  E. f  e. 
{ h  e.  X_ i  e.  I  ( S `  i )  |  h finSupp  .0.  } x  =  ( G  gsumg  f ) )  ->  ( x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  ->  x  e.  {  .0.  } ) ) )
6112, 60sylbid 230 . . . . 5  |-  ( ph  ->  ( x  e.  ( G DProd  S )  -> 
( x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  ->  x  e.  {  .0.  } ) ) )
6261com23 86 . . . 4  |-  ( ph  ->  ( x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  ->  ( x  e.  ( G DProd  S )  ->  x  e.  {  .0.  } ) ) )
638, 62mpdd 43 . . 3  |-  ( ph  ->  ( x  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  ->  x  e.  {  .0.  } ) )
6463ssrdv 3609 . 2  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  {  .0.  } )
655simpld 475 . . . . 5  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
66 dprdsubg 18423 . . . . 5  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
679subg0cl 17602 . . . . 5  |-  ( ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( G DProd 
( S  |`  C ) ) )
6865, 66, 673syl 18 . . . 4  |-  ( ph  ->  .0.  e.  ( G DProd 
( S  |`  C ) ) )
692, 3, 33dprdres 18427 . . . . . 6  |-  ( ph  ->  ( G dom DProd  ( S  |`  D )  /\  ( G DProd  ( S  |`  D ) )  C_  ( G DProd  S ) ) )
7069simpld 475 . . . . 5  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
71 dprdsubg 18423 . . . . 5  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
729subg0cl 17602 . . . . 5  |-  ( ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( G DProd 
( S  |`  D ) ) )
7370, 71, 723syl 18 . . . 4  |-  ( ph  ->  .0.  e.  ( G DProd 
( S  |`  D ) ) )
7468, 73elind 3798 . . 3  |-  ( ph  ->  .0.  e.  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
7574snssd 4340 . 2  |-  ( ph  ->  {  .0.  }  C_  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
7664, 75eqssd 3620 1  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   ` cfv 5888  (class class class)co 6650   X_cixp 7908   finSupp cfsupp 8275   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422  SubGrpcsubg 17588   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dmdprdsplit  18446  ablfac1eulem  18471  ablfac1eu  18472
  Copyright terms: Public domain W3C validator