MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1expd Structured version   Visualization version   Unicode version

Theorem evl1expd 19709
Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1addd.q  |-  O  =  (eval1 `  R )
evl1addd.p  |-  P  =  (Poly1 `  R )
evl1addd.b  |-  B  =  ( Base `  R
)
evl1addd.u  |-  U  =  ( Base `  P
)
evl1addd.1  |-  ( ph  ->  R  e.  CRing )
evl1addd.2  |-  ( ph  ->  Y  e.  B )
evl1addd.3  |-  ( ph  ->  ( M  e.  U  /\  ( ( O `  M ) `  Y
)  =  V ) )
evl1expd.f  |-  .xb  =  (.g
`  (mulGrp `  P )
)
evl1expd.e  |-  .^  =  (.g
`  (mulGrp `  R )
)
evl1expd.4  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
evl1expd  |-  ( ph  ->  ( ( N  .xb  M )  e.  U  /\  ( ( O `  ( N  .xb  M ) ) `  Y )  =  ( N  .^  V ) ) )

Proof of Theorem evl1expd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1addd.1 . . . . 5  |-  ( ph  ->  R  e.  CRing )
2 crngring 18558 . . . . 5  |-  ( R  e.  CRing  ->  R  e.  Ring )
31, 2syl 17 . . . 4  |-  ( ph  ->  R  e.  Ring )
4 evl1addd.p . . . . 5  |-  P  =  (Poly1 `  R )
54ply1ring 19618 . . . 4  |-  ( R  e.  Ring  ->  P  e. 
Ring )
6 eqid 2622 . . . . 5  |-  (mulGrp `  P )  =  (mulGrp `  P )
76ringmgp 18553 . . . 4  |-  ( P  e.  Ring  ->  (mulGrp `  P )  e.  Mnd )
83, 5, 73syl 18 . . 3  |-  ( ph  ->  (mulGrp `  P )  e.  Mnd )
9 evl1expd.4 . . 3  |-  ( ph  ->  N  e.  NN0 )
10 evl1addd.3 . . . 4  |-  ( ph  ->  ( M  e.  U  /\  ( ( O `  M ) `  Y
)  =  V ) )
1110simpld 475 . . 3  |-  ( ph  ->  M  e.  U )
12 evl1addd.u . . . . 5  |-  U  =  ( Base `  P
)
136, 12mgpbas 18495 . . . 4  |-  U  =  ( Base `  (mulGrp `  P ) )
14 evl1expd.f . . . 4  |-  .xb  =  (.g
`  (mulGrp `  P )
)
1513, 14mulgnn0cl 17558 . . 3  |-  ( ( (mulGrp `  P )  e.  Mnd  /\  N  e. 
NN0  /\  M  e.  U )  ->  ( N  .xb  M )  e.  U )
168, 9, 11, 15syl3anc 1326 . 2  |-  ( ph  ->  ( N  .xb  M
)  e.  U )
17 evl1addd.q . . . . . . . . 9  |-  O  =  (eval1 `  R )
18 eqid 2622 . . . . . . . . 9  |-  ( R  ^s  B )  =  ( R  ^s  B )
19 evl1addd.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
2017, 4, 18, 19evl1rhm 19696 . . . . . . . 8  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  B
) ) )
211, 20syl 17 . . . . . . 7  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  B ) ) )
22 eqid 2622 . . . . . . . 8  |-  (mulGrp `  ( R  ^s  B )
)  =  (mulGrp `  ( R  ^s  B )
)
236, 22rhmmhm 18722 . . . . . . 7  |-  ( O  e.  ( P RingHom  ( R  ^s  B ) )  ->  O  e.  ( (mulGrp `  P ) MndHom  (mulGrp `  ( R  ^s  B )
) ) )
2421, 23syl 17 . . . . . 6  |-  ( ph  ->  O  e.  ( (mulGrp `  P ) MndHom  (mulGrp `  ( R  ^s  B )
) ) )
25 eqid 2622 . . . . . . 7  |-  (.g `  (mulGrp `  ( R  ^s  B ) ) )  =  (.g `  (mulGrp `  ( R  ^s  B ) ) )
2613, 14, 25mhmmulg 17583 . . . . . 6  |-  ( ( O  e.  ( (mulGrp `  P ) MndHom  (mulGrp `  ( R  ^s  B )
) )  /\  N  e.  NN0  /\  M  e.  U )  ->  ( O `  ( N  .xb 
M ) )  =  ( N (.g `  (mulGrp `  ( R  ^s  B ) ) ) ( O `
 M ) ) )
2724, 9, 11, 26syl3anc 1326 . . . . 5  |-  ( ph  ->  ( O `  ( N  .xb  M ) )  =  ( N (.g `  (mulGrp `  ( R  ^s  B ) ) ) ( O `  M
) ) )
28 eqid 2622 . . . . . . 7  |-  (.g `  (
(mulGrp `  R )  ^s  B ) )  =  (.g `  ( (mulGrp `  R )  ^s  B ) )
29 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( Base `  (mulGrp `  ( R  ^s  B ) ) )  =  (
Base `  (mulGrp `  ( R  ^s  B ) ) ) )
30 fvex 6201 . . . . . . . . . 10  |-  ( Base `  R )  e.  _V
3119, 30eqeltri 2697 . . . . . . . . 9  |-  B  e. 
_V
32 eqid 2622 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
33 eqid 2622 . . . . . . . . . 10  |-  ( (mulGrp `  R )  ^s  B )  =  ( (mulGrp `  R )  ^s  B )
34 eqid 2622 . . . . . . . . . 10  |-  ( Base `  (mulGrp `  ( R  ^s  B ) ) )  =  ( Base `  (mulGrp `  ( R  ^s  B ) ) )
35 eqid 2622 . . . . . . . . . 10  |-  ( Base `  ( (mulGrp `  R
)  ^s  B ) )  =  ( Base `  (
(mulGrp `  R )  ^s  B ) )
36 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  (mulGrp `  ( R  ^s  B ) ) )  =  ( +g  `  (mulGrp `  ( R  ^s  B ) ) )
37 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  ( (mulGrp `  R
)  ^s  B ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  B ) )
3818, 32, 33, 22, 34, 35, 36, 37pwsmgp 18618 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  B  e.  _V )  ->  (
( Base `  (mulGrp `  ( R  ^s  B ) ) )  =  ( Base `  (
(mulGrp `  R )  ^s  B ) )  /\  ( +g  `  (mulGrp `  ( R  ^s  B )
) )  =  ( +g  `  ( (mulGrp `  R )  ^s  B ) ) ) )
391, 31, 38sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( ( Base `  (mulGrp `  ( R  ^s  B ) ) )  =  (
Base `  ( (mulGrp `  R )  ^s  B ) )  /\  ( +g  `  (mulGrp `  ( R  ^s  B ) ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  B ) ) ) )
4039simpld 475 . . . . . . 7  |-  ( ph  ->  ( Base `  (mulGrp `  ( R  ^s  B ) ) )  =  (
Base `  ( (mulGrp `  R )  ^s  B ) ) )
41 ssv 3625 . . . . . . . 8  |-  ( Base `  (mulGrp `  ( R  ^s  B ) ) ) 
C_  _V
4241a1i 11 . . . . . . 7  |-  ( ph  ->  ( Base `  (mulGrp `  ( R  ^s  B ) ) )  C_  _V )
43 ovexd 6680 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x ( +g  `  (mulGrp `  ( R  ^s  B ) ) ) y )  e.  _V )
4439simprd 479 . . . . . . . 8  |-  ( ph  ->  ( +g  `  (mulGrp `  ( R  ^s  B ) ) )  =  ( +g  `  ( (mulGrp `  R )  ^s  B ) ) )
4544oveqdr 6674 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x ( +g  `  (mulGrp `  ( R  ^s  B ) ) ) y )  =  ( x ( +g  `  (
(mulGrp `  R )  ^s  B ) ) y ) )
4625, 28, 29, 40, 42, 43, 45mulgpropd 17584 . . . . . 6  |-  ( ph  ->  (.g `  (mulGrp `  ( R  ^s  B ) ) )  =  (.g `  ( (mulGrp `  R )  ^s  B ) ) )
4746oveqd 6667 . . . . 5  |-  ( ph  ->  ( N (.g `  (mulGrp `  ( R  ^s  B ) ) ) ( O `
 M ) )  =  ( N (.g `  ( (mulGrp `  R
)  ^s  B ) ) ( O `  M ) ) )
4827, 47eqtrd 2656 . . . 4  |-  ( ph  ->  ( O `  ( N  .xb  M ) )  =  ( N (.g `  ( (mulGrp `  R
)  ^s  B ) ) ( O `  M ) ) )
4948fveq1d 6193 . . 3  |-  ( ph  ->  ( ( O `  ( N  .xb  M ) ) `  Y )  =  ( ( N (.g `  ( (mulGrp `  R )  ^s  B ) ) ( O `  M ) ) `  Y ) )
5032ringmgp 18553 . . . . . 6  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
513, 50syl 17 . . . . 5  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
5231a1i 11 . . . . 5  |-  ( ph  ->  B  e.  _V )
53 eqid 2622 . . . . . . . . 9  |-  ( Base `  ( R  ^s  B ) )  =  ( Base `  ( R  ^s  B ) )
5412, 53rhmf 18726 . . . . . . . 8  |-  ( O  e.  ( P RingHom  ( R  ^s  B ) )  ->  O : U --> ( Base `  ( R  ^s  B ) ) )
5521, 54syl 17 . . . . . . 7  |-  ( ph  ->  O : U --> ( Base `  ( R  ^s  B ) ) )
5655, 11ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( O `  M
)  e.  ( Base `  ( R  ^s  B ) ) )
5722, 53mgpbas 18495 . . . . . . 7  |-  ( Base `  ( R  ^s  B ) )  =  ( Base `  (mulGrp `  ( R  ^s  B ) ) )
5857, 40syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( Base `  ( R  ^s  B ) )  =  ( Base `  (
(mulGrp `  R )  ^s  B ) ) )
5956, 58eleqtrd 2703 . . . . 5  |-  ( ph  ->  ( O `  M
)  e.  ( Base `  ( (mulGrp `  R
)  ^s  B ) ) )
60 evl1addd.2 . . . . 5  |-  ( ph  ->  Y  e.  B )
61 evl1expd.e . . . . . 6  |-  .^  =  (.g
`  (mulGrp `  R )
)
6233, 35, 28, 61pwsmulg 17587 . . . . 5  |-  ( ( ( (mulGrp `  R
)  e.  Mnd  /\  B  e.  _V )  /\  ( N  e.  NN0  /\  ( O `  M
)  e.  ( Base `  ( (mulGrp `  R
)  ^s  B ) )  /\  Y  e.  B )
)  ->  ( ( N (.g `  ( (mulGrp `  R )  ^s  B ) ) ( O `  M ) ) `  Y )  =  ( N  .^  ( ( O `  M ) `  Y ) ) )
6351, 52, 9, 59, 60, 62syl23anc 1333 . . . 4  |-  ( ph  ->  ( ( N (.g `  ( (mulGrp `  R
)  ^s  B ) ) ( O `  M ) ) `  Y )  =  ( N  .^  ( ( O `  M ) `  Y
) ) )
6410simprd 479 . . . . 5  |-  ( ph  ->  ( ( O `  M ) `  Y
)  =  V )
6564oveq2d 6666 . . . 4  |-  ( ph  ->  ( N  .^  (
( O `  M
) `  Y )
)  =  ( N 
.^  V ) )
6663, 65eqtrd 2656 . . 3  |-  ( ph  ->  ( ( N (.g `  ( (mulGrp `  R
)  ^s  B ) ) ( O `  M ) ) `  Y )  =  ( N  .^  V ) )
6749, 66eqtrd 2656 . 2  |-  ( ph  ->  ( ( O `  ( N  .xb  M ) ) `  Y )  =  ( N  .^  V ) )
6816, 67jca 554 1  |-  ( ph  ->  ( ( N  .xb  M )  e.  U  /\  ( ( O `  ( N  .xb  M ) ) `  Y )  =  ( N  .^  V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   -->wf 5884   ` cfv 5888  (class class class)co 6650   NN0cn0 11292   Basecbs 15857   +g cplusg 15941    ^s cpws 16107   Mndcmnd 17294   MndHom cmhm 17333  .gcmg 17540  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712  Poly1cpl1 19547  eval1ce1 19679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-ply1 19552  df-evl1 19681
This theorem is referenced by:  evl1varpwval  19726  plypf1  23968  lgsqrlem1  25071  idomrootle  37773
  Copyright terms: Public domain W3C validator