MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem3 Structured version   Visualization version   Unicode version

Theorem elqaalem3 24076
Description: Lemma for elqaa 24077. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1  |-  ( ph  ->  A  e.  CC )
elqaa.2  |-  ( ph  ->  F  e.  ( (Poly `  QQ )  \  {
0p } ) )
elqaa.3  |-  ( ph  ->  ( F `  A
)  =  0 )
elqaa.4  |-  B  =  (coeff `  F )
elqaa.5  |-  N  =  ( k  e.  NN0  |-> inf ( { n  e.  NN  |  ( ( B `
 k )  x.  n )  e.  ZZ } ,  RR ,  <  ) )
elqaa.6  |-  R  =  (  seq 0 (  x.  ,  N ) `
 (deg `  F
) )
Assertion
Ref Expression
elqaalem3  |-  ( ph  ->  A  e.  AA )
Distinct variable groups:    k, n, A    B, k, n    ph, k    k, N, n    R, k
Allowed substitution hints:    ph( n)    R( n)    F( k, n)

Proof of Theorem elqaalem3
Dummy variables  f  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elqaa.1 . 2  |-  ( ph  ->  A  e.  CC )
2 cnex 10017 . . . . . . . 8  |-  CC  e.  _V
32a1i 11 . . . . . . 7  |-  ( ph  ->  CC  e.  _V )
4 elqaa.6 . . . . . . . . 9  |-  R  =  (  seq 0 (  x.  ,  N ) `
 (deg `  F
) )
5 fvex 6201 . . . . . . . . 9  |-  (  seq 0 (  x.  ,  N ) `  (deg `  F ) )  e. 
_V
64, 5eqeltri 2697 . . . . . . . 8  |-  R  e. 
_V
76a1i 11 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  R  e. 
_V )
8 fvexd 6203 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( F `
 z )  e. 
_V )
9 fconstmpt 5163 . . . . . . . 8  |-  ( CC 
X.  { R }
)  =  ( z  e.  CC  |->  R )
109a1i 11 . . . . . . 7  |-  ( ph  ->  ( CC  X.  { R } )  =  ( z  e.  CC  |->  R ) )
11 elqaa.2 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( (Poly `  QQ )  \  {
0p } ) )
1211eldifad 3586 . . . . . . . . 9  |-  ( ph  ->  F  e.  (Poly `  QQ ) )
13 plyf 23954 . . . . . . . . 9  |-  ( F  e.  (Poly `  QQ )  ->  F : CC --> CC )
1412, 13syl 17 . . . . . . . 8  |-  ( ph  ->  F : CC --> CC )
1514feqmptd 6249 . . . . . . 7  |-  ( ph  ->  F  =  ( z  e.  CC  |->  ( F `
 z ) ) )
163, 7, 8, 10, 15offval2 6914 . . . . . 6  |-  ( ph  ->  ( ( CC  X.  { R } )  oF  x.  F )  =  ( z  e.  CC  |->  ( R  x.  ( F `  z ) ) ) )
17 fzfid 12772 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... (deg `  F
) )  e.  Fin )
18 nn0uz 11722 . . . . . . . . . . . . . 14  |-  NN0  =  ( ZZ>= `  0 )
19 0zd 11389 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  e.  ZZ )
20 ssrab2 3687 . . . . . . . . . . . . . . 15  |-  { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ }  C_  NN
21 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  m  ->  ( B `  k )  =  ( B `  m ) )
2221oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  m  ->  (
( B `  k
)  x.  n )  =  ( ( B `
 m )  x.  n ) )
2322eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  m  ->  (
( ( B `  k )  x.  n
)  e.  ZZ  <->  ( ( B `  m )  x.  n )  e.  ZZ ) )
2423rabbidv 3189 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  m  ->  { n  e.  NN  |  ( ( B `  k )  x.  n )  e.  ZZ }  =  {
n  e.  NN  | 
( ( B `  m )  x.  n
)  e.  ZZ }
)
2524infeq1d 8383 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  m  -> inf ( { n  e.  NN  | 
( ( B `  k )  x.  n
)  e.  ZZ } ,  RR ,  <  )  = inf ( { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ } ,  RR ,  <  ) )
26 elqaa.5 . . . . . . . . . . . . . . . . . 18  |-  N  =  ( k  e.  NN0  |-> inf ( { n  e.  NN  |  ( ( B `
 k )  x.  n )  e.  ZZ } ,  RR ,  <  ) )
27 ltso 10118 . . . . . . . . . . . . . . . . . . 19  |-  <  Or  RR
2827infex 8399 . . . . . . . . . . . . . . . . . 18  |- inf ( { n  e.  NN  | 
( ( B `  m )  x.  n
)  e.  ZZ } ,  RR ,  <  )  e.  _V
2925, 26, 28fvmpt 6282 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  ( N `
 m )  = inf ( { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ } ,  RR ,  <  ) )
3029adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N `  m )  = inf ( { n  e.  NN  |  ( ( B `
 m )  x.  n )  e.  ZZ } ,  RR ,  <  ) )
31 nnuz 11723 . . . . . . . . . . . . . . . . . 18  |-  NN  =  ( ZZ>= `  1 )
3220, 31sseqtri 3637 . . . . . . . . . . . . . . . . 17  |-  { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ }  C_  ( ZZ>=
`  1 )
33 0z 11388 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  ZZ
34 zq 11794 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  QQ
36 elqaa.4 . . . . . . . . . . . . . . . . . . . . . 22  |-  B  =  (coeff `  F )
3736coef2 23987 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  e.  (Poly `  QQ )  /\  0  e.  QQ )  ->  B : NN0 --> QQ )
3812, 35, 37sylancl 694 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  B : NN0 --> QQ )
3938ffvelrnda 6359 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( B `  m )  e.  QQ )
40 qmulz 11791 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B `  m )  e.  QQ  ->  E. n  e.  NN  ( ( B `
 m )  x.  n )  e.  ZZ )
4139, 40syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN0 )  ->  E. n  e.  NN  ( ( B `
 m )  x.  n )  e.  ZZ )
42 rabn0 3958 . . . . . . . . . . . . . . . . . 18  |-  ( { n  e.  NN  | 
( ( B `  m )  x.  n
)  e.  ZZ }  =/=  (/)  <->  E. n  e.  NN  ( ( B `  m )  x.  n
)  e.  ZZ )
4341, 42sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN0 )  ->  { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ }  =/=  (/) )
44 infssuzcl 11772 . . . . . . . . . . . . . . . . 17  |-  ( ( { n  e.  NN  |  ( ( B `
 m )  x.  n )  e.  ZZ }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ }  =/=  (/) )  -> inf ( { n  e.  NN  |  ( ( B `
 m )  x.  n )  e.  ZZ } ,  RR ,  <  )  e.  { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ } )
4532, 43, 44sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  -> inf ( {
n  e.  NN  | 
( ( B `  m )  x.  n
)  e.  ZZ } ,  RR ,  <  )  e.  { n  e.  NN  |  ( ( B `
 m )  x.  n )  e.  ZZ } )
4630, 45eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N `  m )  e.  {
n  e.  NN  | 
( ( B `  m )  x.  n
)  e.  ZZ }
)
4720, 46sseldi 3601 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N `  m )  e.  NN )
48 nnmulcl 11043 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  NN  /\  k  e.  NN )  ->  ( m  x.  k
)  e.  NN )
4948adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  NN  /\  k  e.  NN ) )  -> 
( m  x.  k
)  e.  NN )
5018, 19, 47, 49seqf 12822 . . . . . . . . . . . . 13  |-  ( ph  ->  seq 0 (  x.  ,  N ) : NN0 --> NN )
51 dgrcl 23989 . . . . . . . . . . . . . 14  |-  ( F  e.  (Poly `  QQ )  ->  (deg `  F
)  e.  NN0 )
5212, 51syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  F )  e.  NN0 )
5350, 52ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ph  ->  (  seq 0 (  x.  ,  N ) `
 (deg `  F
) )  e.  NN )
544, 53syl5eqel 2705 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  NN )
5554nncnd 11036 . . . . . . . . . 10  |-  ( ph  ->  R  e.  CC )
5655adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  R  e.  CC )
57 elfznn0 12433 . . . . . . . . . 10  |-  ( m  e.  ( 0 ... (deg `  F )
)  ->  m  e.  NN0 )
5836coef3 23988 . . . . . . . . . . . . . 14  |-  ( F  e.  (Poly `  QQ )  ->  B : NN0 --> CC )
5912, 58syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  B : NN0 --> CC )
6059adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  CC )  ->  B : NN0
--> CC )
6160ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  m  e.  NN0 )  ->  ( B `  m )  e.  CC )
62 expcl 12878 . . . . . . . . . . . 12  |-  ( ( z  e.  CC  /\  m  e.  NN0 )  -> 
( z ^ m
)  e.  CC )
6362adantll 750 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  m  e.  NN0 )  ->  (
z ^ m )  e.  CC )
6461, 63mulcld 10060 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  m  e.  NN0 )  ->  (
( B `  m
)  x.  ( z ^ m ) )  e.  CC )
6557, 64sylan2 491 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( B `
 m )  x.  ( z ^ m
) )  e.  CC )
6617, 56, 65fsummulc2 14516 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  ( R  x.  sum_ m  e.  ( 0 ... (deg `  F ) ) ( ( B `  m
)  x.  ( z ^ m ) ) )  =  sum_ m  e.  ( 0 ... (deg `  F ) ) ( R  x.  ( ( B `  m )  x.  ( z ^
m ) ) ) )
67 eqid 2622 . . . . . . . . . . 11  |-  (deg `  F )  =  (deg
`  F )
6836, 67coeid2 23995 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  QQ )  /\  z  e.  CC )  ->  ( F `  z )  =  sum_ m  e.  ( 0 ... (deg `  F ) ) ( ( B `  m
)  x.  ( z ^ m ) ) )
6912, 68sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  ( F `
 z )  = 
sum_ m  e.  (
0 ... (deg `  F
) ) ( ( B `  m )  x.  ( z ^
m ) ) )
7069oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  ( R  x.  ( F `  z ) )  =  ( R  x.  sum_ m  e.  ( 0 ... (deg `  F )
) ( ( B `
 m )  x.  ( z ^ m
) ) ) )
7156adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  m  e.  NN0 )  ->  R  e.  CC )
7271, 61, 63mulassd 10063 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  m  e.  NN0 )  ->  (
( R  x.  ( B `  m )
)  x.  ( z ^ m ) )  =  ( R  x.  ( ( B `  m )  x.  (
z ^ m ) ) ) )
7357, 72sylan2 491 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( R  x.  ( B `  m ) )  x.  ( z ^ m
) )  =  ( R  x.  ( ( B `  m )  x.  ( z ^
m ) ) ) )
7473sumeq2dv 14433 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ m  e.  ( 0 ... (deg `  F ) ) ( ( R  x.  ( B `  m )
)  x.  ( z ^ m ) )  =  sum_ m  e.  ( 0 ... (deg `  F ) ) ( R  x.  ( ( B `  m )  x.  ( z ^
m ) ) ) )
7566, 70, 743eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( R  x.  ( F `  z ) )  = 
sum_ m  e.  (
0 ... (deg `  F
) ) ( ( R  x.  ( B `
 m ) )  x.  ( z ^
m ) ) )
7675mpteq2dva 4744 . . . . . 6  |-  ( ph  ->  ( z  e.  CC  |->  ( R  x.  ( F `  z )
) )  =  ( z  e.  CC  |->  sum_
m  e.  ( 0 ... (deg `  F
) ) ( ( R  x.  ( B `
 m ) )  x.  ( z ^
m ) ) ) )
7716, 76eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( CC  X.  { R } )  oF  x.  F )  =  ( z  e.  CC  |->  sum_ m  e.  ( 0 ... (deg `  F ) ) ( ( R  x.  ( B `  m )
)  x.  ( z ^ m ) ) ) )
78 zsscn 11385 . . . . . . 7  |-  ZZ  C_  CC
7978a1i 11 . . . . . 6  |-  ( ph  ->  ZZ  C_  CC )
8055adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  R  e.  CC )
8147nncnd 11036 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N `  m )  e.  CC )
8247nnne0d 11065 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N `  m )  =/=  0
)
8380, 81, 82divcan2d 10803 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( N `  m )  x.  ( R  /  ( N `  m )
) )  =  R )
8483oveq2d 6666 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( B `  m )  x.  ( ( N `  m )  x.  ( R  /  ( N `  m ) ) ) )  =  ( ( B `  m )  x.  R ) )
8559ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( B `  m )  e.  CC )
8680, 81, 82divcld 10801 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( R  /  ( N `  m ) )  e.  CC )
8785, 81, 86mulassd 10063 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
( B `  m
)  x.  ( N `
 m ) )  x.  ( R  / 
( N `  m
) ) )  =  ( ( B `  m )  x.  (
( N `  m
)  x.  ( R  /  ( N `  m ) ) ) ) )
8880, 85mulcomd 10061 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( R  x.  ( B `  m
) )  =  ( ( B `  m
)  x.  R ) )
8984, 87, 883eqtr4rd 2667 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( R  x.  ( B `  m
) )  =  ( ( ( B `  m )  x.  ( N `  m )
)  x.  ( R  /  ( N `  m ) ) ) )
9057, 89sylan2 491 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( R  x.  ( B `  m ) )  =  ( ( ( B `  m
)  x.  ( N `
 m ) )  x.  ( R  / 
( N `  m
) ) ) )
91 oveq2 6658 . . . . . . . . . . . . 13  |-  ( n  =  ( N `  m )  ->  (
( B `  m
)  x.  n )  =  ( ( B `
 m )  x.  ( N `  m
) ) )
9291eleq1d 2686 . . . . . . . . . . . 12  |-  ( n  =  ( N `  m )  ->  (
( ( B `  m )  x.  n
)  e.  ZZ  <->  ( ( B `  m )  x.  ( N `  m
) )  e.  ZZ ) )
9392elrab 3363 . . . . . . . . . . 11  |-  ( ( N `  m )  e.  { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ }  <->  ( ( N `  m )  e.  NN  /\  ( ( B `  m )  x.  ( N `  m ) )  e.  ZZ ) )
9493simprbi 480 . . . . . . . . . 10  |-  ( ( N `  m )  e.  { n  e.  NN  |  ( ( B `  m )  x.  n )  e.  ZZ }  ->  (
( B `  m
)  x.  ( N `
 m ) )  e.  ZZ )
9546, 94syl 17 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( B `  m )  x.  ( N `  m
) )  e.  ZZ )
9657, 95sylan2 491 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( B `
 m )  x.  ( N `  m
) )  e.  ZZ )
97 elqaa.3 . . . . . . . . . 10  |-  ( ph  ->  ( F `  A
)  =  0 )
98 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  _V ,  y  e.  _V  |->  ( ( x  x.  y )  mod  ( N `  m ) ) )  =  ( x  e. 
_V ,  y  e. 
_V  |->  ( ( x  x.  y )  mod  ( N `  m
) ) )
991, 11, 97, 36, 26, 4, 98elqaalem2 24075 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( R  mod  ( N `  m ) )  =  0 )
10054adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  R  e.  NN )
10157, 47sylan2 491 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( N `  m )  e.  NN )
102 nnre 11027 . . . . . . . . . . 11  |-  ( R  e.  NN  ->  R  e.  RR )
103 nnrp 11842 . . . . . . . . . . 11  |-  ( ( N `  m )  e.  NN  ->  ( N `  m )  e.  RR+ )
104 mod0 12675 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  ( N `  m )  e.  RR+ )  ->  (
( R  mod  ( N `  m )
)  =  0  <->  ( R  /  ( N `  m ) )  e.  ZZ ) )
105102, 103, 104syl2an 494 . . . . . . . . . 10  |-  ( ( R  e.  NN  /\  ( N `  m )  e.  NN )  -> 
( ( R  mod  ( N `  m ) )  =  0  <->  ( R  /  ( N `  m ) )  e.  ZZ ) )
106100, 101, 105syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( R  mod  ( N `  m ) )  =  0  <->  ( R  / 
( N `  m
) )  e.  ZZ ) )
10799, 106mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( R  / 
( N `  m
) )  e.  ZZ )
10896, 107zmulcld 11488 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( B `  m )  x.  ( N `  m ) )  x.  ( R  /  ( N `  m )
) )  e.  ZZ )
10990, 108eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 0 ... (deg `  F ) ) )  ->  ( R  x.  ( B `  m ) )  e.  ZZ )
11079, 52, 109elplyd 23958 . . . . 5  |-  ( ph  ->  ( z  e.  CC  |->  sum_
m  e.  ( 0 ... (deg `  F
) ) ( ( R  x.  ( B `
 m ) )  x.  ( z ^
m ) ) )  e.  (Poly `  ZZ ) )
11177, 110eqeltrd 2701 . . . 4  |-  ( ph  ->  ( ( CC  X.  { R } )  oF  x.  F )  e.  (Poly `  ZZ ) )
112 eldifsn 4317 . . . . . . 7  |-  ( F  e.  ( (Poly `  QQ )  \  { 0p } )  <->  ( F  e.  (Poly `  QQ )  /\  F  =/=  0p ) )
11311, 112sylib 208 . . . . . 6  |-  ( ph  ->  ( F  e.  (Poly `  QQ )  /\  F  =/=  0p ) )
114113simprd 479 . . . . 5  |-  ( ph  ->  F  =/=  0p )
115 oveq1 6657 . . . . . . 7  |-  ( ( ( CC  X.  { R } )  oF  x.  F )  =  0p  ->  (
( ( CC  X.  { R } )  oF  x.  F )  oF  /  ( CC  X.  { R }
) )  =  ( 0p  oF  /  ( CC  X.  { R } ) ) )
11614ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  ( F `
 z )  e.  CC )
11754nnne0d 11065 . . . . . . . . . . . 12  |-  ( ph  ->  R  =/=  0 )
118117adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  R  =/=  0 )
119116, 56, 118divcan3d 10806 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( R  x.  ( F `
 z ) )  /  R )  =  ( F `  z
) )
120119mpteq2dva 4744 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  CC  |->  ( ( R  x.  ( F `  z ) )  /  R ) )  =  ( z  e.  CC  |->  ( F `
 z ) ) )
121 ovexd 6680 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  CC )  ->  ( R  x.  ( F `  z ) )  e. 
_V )
1223, 121, 7, 16, 10offval2 6914 . . . . . . . . 9  |-  ( ph  ->  ( ( ( CC 
X.  { R }
)  oF  x.  F )  oF  /  ( CC  X.  { R } ) )  =  ( z  e.  CC  |->  ( ( R  x.  ( F `  z ) )  /  R ) ) )
123120, 122, 153eqtr4d 2666 . . . . . . . 8  |-  ( ph  ->  ( ( ( CC 
X.  { R }
)  oF  x.  F )  oF  /  ( CC  X.  { R } ) )  =  F )
12455, 117div0d 10800 . . . . . . . . . 10  |-  ( ph  ->  ( 0  /  R
)  =  0 )
125124mpteq2dv 4745 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  CC  |->  ( 0  /  R
) )  =  ( z  e.  CC  |->  0 ) )
126 0cnd 10033 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  CC )  ->  0  e.  CC )
127 df-0p 23437 . . . . . . . . . . . 12  |-  0p  =  ( CC  X.  { 0 } )
128 fconstmpt 5163 . . . . . . . . . . . 12  |-  ( CC 
X.  { 0 } )  =  ( z  e.  CC  |->  0 )
129127, 128eqtri 2644 . . . . . . . . . . 11  |-  0p  =  ( z  e.  CC  |->  0 )
130129a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0p  =  ( z  e.  CC  |->  0 ) )
1313, 126, 7, 130, 10offval2 6914 . . . . . . . . 9  |-  ( ph  ->  ( 0p  oF  /  ( CC 
X.  { R }
) )  =  ( z  e.  CC  |->  ( 0  /  R ) ) )
132125, 131, 1303eqtr4d 2666 . . . . . . . 8  |-  ( ph  ->  ( 0p  oF  /  ( CC 
X.  { R }
) )  =  0p )
133123, 132eqeq12d 2637 . . . . . . 7  |-  ( ph  ->  ( ( ( ( CC  X.  { R } )  oF  x.  F )  oF  /  ( CC 
X.  { R }
) )  =  ( 0p  oF  /  ( CC  X.  { R } ) )  <-> 
F  =  0p ) )
134115, 133syl5ib 234 . . . . . 6  |-  ( ph  ->  ( ( ( CC 
X.  { R }
)  oF  x.  F )  =  0p  ->  F  = 
0p ) )
135134necon3d 2815 . . . . 5  |-  ( ph  ->  ( F  =/=  0p  ->  ( ( CC 
X.  { R }
)  oF  x.  F )  =/=  0p ) )
136114, 135mpd 15 . . . 4  |-  ( ph  ->  ( ( CC  X.  { R } )  oF  x.  F )  =/=  0p )
137 eldifsn 4317 . . . 4  |-  ( ( ( CC  X.  { R } )  oF  x.  F )  e.  ( (Poly `  ZZ )  \  { 0p } )  <->  ( (
( CC  X.  { R } )  oF  x.  F )  e.  (Poly `  ZZ )  /\  ( ( CC  X.  { R } )  oF  x.  F )  =/=  0p ) )
138111, 136, 137sylanbrc 698 . . 3  |-  ( ph  ->  ( ( CC  X.  { R } )  oF  x.  F )  e.  ( (Poly `  ZZ )  \  { 0p } ) )
1396fconst 6091 . . . . . . 7  |-  ( CC 
X.  { R }
) : CC --> { R }
140 ffn 6045 . . . . . . 7  |-  ( ( CC  X.  { R } ) : CC --> { R }  ->  ( CC  X.  { R }
)  Fn  CC )
141139, 140mp1i 13 . . . . . 6  |-  ( ph  ->  ( CC  X.  { R } )  Fn  CC )
142 ffn 6045 . . . . . . 7  |-  ( F : CC --> CC  ->  F  Fn  CC )
14314, 142syl 17 . . . . . 6  |-  ( ph  ->  F  Fn  CC )
144 inidm 3822 . . . . . 6  |-  ( CC 
i^i  CC )  =  CC
1456fvconst2 6469 . . . . . . 7  |-  ( A  e.  CC  ->  (
( CC  X.  { R } ) `  A
)  =  R )
146145adantl 482 . . . . . 6  |-  ( (
ph  /\  A  e.  CC )  ->  ( ( CC  X.  { R } ) `  A
)  =  R )
14797adantr 481 . . . . . 6  |-  ( (
ph  /\  A  e.  CC )  ->  ( F `
 A )  =  0 )
148141, 143, 3, 3, 144, 146, 147ofval 6906 . . . . 5  |-  ( (
ph  /\  A  e.  CC )  ->  ( ( ( CC  X.  { R } )  oF  x.  F ) `  A )  =  ( R  x.  0 ) )
1491, 148mpdan 702 . . . 4  |-  ( ph  ->  ( ( ( CC 
X.  { R }
)  oF  x.  F ) `  A
)  =  ( R  x.  0 ) )
15055mul01d 10235 . . . 4  |-  ( ph  ->  ( R  x.  0 )  =  0 )
151149, 150eqtrd 2656 . . 3  |-  ( ph  ->  ( ( ( CC 
X.  { R }
)  oF  x.  F ) `  A
)  =  0 )
152 fveq1 6190 . . . . 5  |-  ( f  =  ( ( CC 
X.  { R }
)  oF  x.  F )  ->  (
f `  A )  =  ( ( ( CC  X.  { R } )  oF  x.  F ) `  A ) )
153152eqeq1d 2624 . . . 4  |-  ( f  =  ( ( CC 
X.  { R }
)  oF  x.  F )  ->  (
( f `  A
)  =  0  <->  (
( ( CC  X.  { R } )  oF  x.  F ) `
 A )  =  0 ) )
154153rspcev 3309 . . 3  |-  ( ( ( ( CC  X.  { R } )  oF  x.  F )  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  ( ( ( CC 
X.  { R }
)  oF  x.  F ) `  A
)  =  0 )  ->  E. f  e.  ( (Poly `  ZZ )  \  { 0p }
) ( f `  A )  =  0 )
155138, 151, 154syl2anc 693 . 2  |-  ( ph  ->  E. f  e.  ( (Poly `  ZZ )  \  { 0p }
) ( f `  A )  =  0 )
156 elaa 24071 . 2  |-  ( A  e.  AA  <->  ( A  e.  CC  /\  E. f  e.  ( (Poly `  ZZ )  \  { 0p } ) ( f `
 A )  =  0 ) )
1571, 155, 156sylanbrc 698 1  |-  ( ph  ->  A  e.  AA )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   RR+crp 11832   ...cfz 12326    mod cmo 12668    seqcseq 12801   ^cexp 12860   sum_csu 14416   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943   AAcaa 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947  df-aa 24070
This theorem is referenced by:  elqaa  24077
  Copyright terms: Public domain W3C validator