Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breprexpnat Structured version   Visualization version   Unicode version

Theorem breprexpnat 30712
Description: Express the  S th power of the finite series in terms of the number of representations of integers  m as sums of  S terms of elements of  A, bounded by  N. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
breprexp.n  |-  ( ph  ->  N  e.  NN0 )
breprexp.s  |-  ( ph  ->  S  e.  NN0 )
breprexp.z  |-  ( ph  ->  Z  e.  CC )
breprexpnat.a  |-  ( ph  ->  A  C_  NN )
breprexpnat.p  |-  P  = 
sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
)
breprexpnat.r  |-  R  =  ( # `  (
( A  i^i  (
1 ... N ) ) (repr `  S )
m ) )
Assertion
Ref Expression
breprexpnat  |-  ( ph  ->  ( P ^ S
)  =  sum_ m  e.  ( 0 ... ( S  x.  N )
) ( R  x.  ( Z ^ m ) ) )
Distinct variable groups:    m, N    S, m    m, Z    A, b, m    N, b    S, b    Z, b    ph, b, m
Allowed substitution hints:    P( m, b)    R( m, b)

Proof of Theorem breprexpnat
Dummy variables  c 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breprexp.n . . . 4  |-  ( ph  ->  N  e.  NN0 )
2 breprexp.s . . . 4  |-  ( ph  ->  S  e.  NN0 )
3 breprexp.z . . . 4  |-  ( ph  ->  Z  e.  CC )
4 fvex 6201 . . . . . 6  |-  ( (𝟭 `  NN ) `  A
)  e.  _V
54fconst 6091 . . . . 5  |-  ( ( 0..^ S )  X. 
{ ( (𝟭 `  NN ) `  A ) } ) : ( 0..^ S ) --> { ( (𝟭 `  NN ) `  A ) }
6 nnex 11026 . . . . . . . . 9  |-  NN  e.  _V
7 breprexpnat.a . . . . . . . . 9  |-  ( ph  ->  A  C_  NN )
8 indf 30077 . . . . . . . . 9  |-  ( ( NN  e.  _V  /\  A  C_  NN )  -> 
( (𝟭 `  NN ) `  A ) : NN --> { 0 ,  1 } )
96, 7, 8sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( (𝟭 `  NN ) `  A ) : NN --> { 0 ,  1 } )
10 0cn 10032 . . . . . . . . 9  |-  0  e.  CC
11 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
12 prssi 4353 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  1  e.  CC )  ->  { 0 ,  1 }  C_  CC )
1310, 11, 12mp2an 708 . . . . . . . 8  |-  { 0 ,  1 }  C_  CC
14 fss 6056 . . . . . . . 8  |-  ( ( ( (𝟭 `  NN ) `  A ) : NN --> { 0 ,  1 }  /\  {
0 ,  1 } 
C_  CC )  -> 
( (𝟭 `  NN ) `  A ) : NN --> CC )
159, 13, 14sylancl 694 . . . . . . 7  |-  ( ph  ->  ( (𝟭 `  NN ) `  A ) : NN --> CC )
16 cnex 10017 . . . . . . . 8  |-  CC  e.  _V
1716, 6elmap 7886 . . . . . . 7  |-  ( ( (𝟭 `  NN ) `  A )  e.  ( CC  ^m  NN )  <-> 
( (𝟭 `  NN ) `  A ) : NN --> CC )
1815, 17sylibr 224 . . . . . 6  |-  ( ph  ->  ( (𝟭 `  NN ) `  A )  e.  ( CC  ^m  NN ) )
194snss 4316 . . . . . 6  |-  ( ( (𝟭 `  NN ) `  A )  e.  ( CC  ^m  NN )  <->  { ( (𝟭 `  NN ) `  A ) }  C_  ( CC  ^m  NN ) )
2018, 19sylib 208 . . . . 5  |-  ( ph  ->  { ( (𝟭 `  NN ) `  A ) }  C_  ( CC  ^m  NN ) )
21 fss 6056 . . . . 5  |-  ( ( ( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A ) } ) : ( 0..^ S ) --> { ( (𝟭 `  NN ) `  A
) }  /\  {
( (𝟭 `  NN ) `  A ) }  C_  ( CC  ^m  NN ) )  ->  ( (
0..^ S )  X. 
{ ( (𝟭 `  NN ) `  A ) } ) : ( 0..^ S ) --> ( CC  ^m  NN ) )
225, 20, 21sylancr 695 . . . 4  |-  ( ph  ->  ( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A ) } ) : ( 0..^ S ) --> ( CC  ^m  NN ) )
231, 2, 3, 22breprexp 30711 . . 3  |-  ( ph  ->  prod_ a  e.  ( 0..^ S ) sum_ b  e.  ( 1 ... N ) ( ( ( ( ( 0..^ S )  X. 
{ ( (𝟭 `  NN ) `  A ) } ) `  a
) `  b )  x.  ( Z ^ b
) )  =  sum_ m  e.  ( 0 ... ( S  x.  N
) ) sum_ c  e.  ( ( 1 ... N ) (repr `  S ) m ) ( prod_ a  e.  ( 0..^ S ) ( ( ( ( 0..^ S )  X.  {
( (𝟭 `  NN ) `  A ) } ) `
 a ) `  ( c `  a
) )  x.  ( Z ^ m ) ) )
244fvconst2 6469 . . . . . . . . . 10  |-  ( a  e.  ( 0..^ S )  ->  ( (
( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A
) } ) `  a )  =  ( (𝟭 `  NN ) `  A ) )
2524ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( 0..^ S ) )  /\  b  e.  ( 1 ... N
) )  ->  (
( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A ) } ) `
 a )  =  ( (𝟭 `  NN ) `  A )
)
2625fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( 0..^ S ) )  /\  b  e.  ( 1 ... N
) )  ->  (
( ( ( 0..^ S )  X.  {
( (𝟭 `  NN ) `  A ) } ) `
 a ) `  b )  =  ( ( (𝟭 `  NN ) `  A ) `  b ) )
2726oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ S ) )  /\  b  e.  ( 1 ... N
) )  ->  (
( ( ( ( 0..^ S )  X. 
{ ( (𝟭 `  NN ) `  A ) } ) `  a
) `  b )  x.  ( Z ^ b
) )  =  ( ( ( (𝟭 `  NN ) `  A ) `  b )  x.  ( Z ^ b ) ) )
2827sumeq2dv 14433 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  sum_ b  e.  ( 1 ... N ) ( ( ( ( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A
) } ) `  a ) `  b
)  x.  ( Z ^ b ) )  =  sum_ b  e.  ( 1 ... N ) ( ( ( (𝟭 `  NN ) `  A
) `  b )  x.  ( Z ^ b
) ) )
296a1i 11 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  NN  e.  _V )
30 fzfi 12771 . . . . . . . 8  |-  ( 1 ... N )  e. 
Fin
3130a1i 11 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  ( 1 ... N )  e.  Fin )
32 fz1ssnn 12372 . . . . . . . 8  |-  ( 1 ... N )  C_  NN
3332a1i 11 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  ( 1 ... N )  C_  NN )
347adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  A  C_  NN )
353ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( 0..^ S ) )  /\  b  e.  ( 1 ... N
) )  ->  Z  e.  CC )
36 nnssnn0 11295 . . . . . . . . . 10  |-  NN  C_  NN0
3732, 36sstri 3612 . . . . . . . . 9  |-  ( 1 ... N )  C_  NN0
38 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( 0..^ S ) )  /\  b  e.  ( 1 ... N
) )  ->  b  e.  ( 1 ... N
) )
3937, 38sseldi 3601 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( 0..^ S ) )  /\  b  e.  ( 1 ... N
) )  ->  b  e.  NN0 )
4035, 39expcld 13008 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ S ) )  /\  b  e.  ( 1 ... N
) )  ->  ( Z ^ b )  e.  CC )
4129, 31, 33, 34, 40indsumin 30084 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  sum_ b  e.  ( 1 ... N ) ( ( ( (𝟭 `  NN ) `  A
) `  b )  x.  ( Z ^ b
) )  =  sum_ b  e.  ( (
1 ... N )  i^i 
A ) ( Z ^ b ) )
42 incom 3805 . . . . . . . 8  |-  ( ( 1 ... N )  i^i  A )  =  ( A  i^i  (
1 ... N ) )
4342a1i 11 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  ( ( 1 ... N )  i^i 
A )  =  ( A  i^i  ( 1 ... N ) ) )
4443sumeq1d 14431 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  sum_ b  e.  ( ( 1 ... N
)  i^i  A )
( Z ^ b
)  =  sum_ b  e.  ( A  i^i  (
1 ... N ) ) ( Z ^ b
) )
4528, 41, 443eqtrd 2660 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0..^ S ) )  ->  sum_ b  e.  ( 1 ... N ) ( ( ( ( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A
) } ) `  a ) `  b
)  x.  ( Z ^ b ) )  =  sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
) )
4645prodeq2dv 14653 . . . 4  |-  ( ph  ->  prod_ a  e.  ( 0..^ S ) sum_ b  e.  ( 1 ... N ) ( ( ( ( ( 0..^ S )  X. 
{ ( (𝟭 `  NN ) `  A ) } ) `  a
) `  b )  x.  ( Z ^ b
) )  =  prod_ a  e.  ( 0..^ S ) sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
) )
47 fzofi 12773 . . . . . 6  |-  ( 0..^ S )  e.  Fin
4847a1i 11 . . . . 5  |-  ( ph  ->  ( 0..^ S )  e.  Fin )
49 inss2 3834 . . . . . . . 8  |-  ( A  i^i  ( 1 ... N ) )  C_  ( 1 ... N
)
50 ssfi 8180 . . . . . . . 8  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( A  i^i  (
1 ... N ) ) 
C_  ( 1 ... N ) )  -> 
( A  i^i  (
1 ... N ) )  e.  Fin )
5130, 49, 50mp2an 708 . . . . . . 7  |-  ( A  i^i  ( 1 ... N ) )  e. 
Fin
5251a1i 11 . . . . . 6  |-  ( ph  ->  ( A  i^i  (
1 ... N ) )  e.  Fin )
533adantr 481 . . . . . . 7  |-  ( (
ph  /\  b  e.  ( A  i^i  (
1 ... N ) ) )  ->  Z  e.  CC )
5449, 37sstri 3612 . . . . . . . 8  |-  ( A  i^i  ( 1 ... N ) )  C_  NN0
55 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  b  e.  ( A  i^i  (
1 ... N ) ) )  ->  b  e.  ( A  i^i  (
1 ... N ) ) )
5654, 55sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  b  e.  ( A  i^i  (
1 ... N ) ) )  ->  b  e.  NN0 )
5753, 56expcld 13008 . . . . . 6  |-  ( (
ph  /\  b  e.  ( A  i^i  (
1 ... N ) ) )  ->  ( Z ^ b )  e.  CC )
5852, 57fsumcl 14464 . . . . 5  |-  ( ph  -> 
sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
)  e.  CC )
59 fprodconst 14708 . . . . 5  |-  ( ( ( 0..^ S )  e.  Fin  /\  sum_ b  e.  ( A  i^i  ( 1 ... N
) ) ( Z ^ b )  e.  CC )  ->  prod_ a  e.  ( 0..^ S ) sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
)  =  ( sum_ b  e.  ( A  i^i  ( 1 ... N
) ) ( Z ^ b ) ^
( # `  ( 0..^ S ) ) ) )
6048, 58, 59syl2anc 693 . . . 4  |-  ( ph  ->  prod_ a  e.  ( 0..^ S ) sum_ b  e.  ( A  i^i  ( 1 ... N
) ) ( Z ^ b )  =  ( sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
) ^ ( # `  ( 0..^ S ) ) ) )
61 hashfzo0 13217 . . . . . 6  |-  ( S  e.  NN0  ->  ( # `  ( 0..^ S ) )  =  S )
622, 61syl 17 . . . . 5  |-  ( ph  ->  ( # `  (
0..^ S ) )  =  S )
6362oveq2d 6666 . . . 4  |-  ( ph  ->  ( sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
) ^ ( # `  ( 0..^ S ) ) )  =  (
sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
) ^ S ) )
6446, 60, 633eqtrd 2660 . . 3  |-  ( ph  ->  prod_ a  e.  ( 0..^ S ) sum_ b  e.  ( 1 ... N ) ( ( ( ( ( 0..^ S )  X. 
{ ( (𝟭 `  NN ) `  A ) } ) `  a
) `  b )  x.  ( Z ^ b
) )  =  (
sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
) ^ S ) )
6532a1i 11 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  (
1 ... N )  C_  NN )
66 fzssz 12343 . . . . . . . 8  |-  ( 0 ... ( S  x.  N ) )  C_  ZZ
67 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  m  e.  ( 0 ... ( S  x.  N )
) )
6866, 67sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  m  e.  ZZ )
692adantr 481 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  S  e.  NN0 )
7030a1i 11 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  (
1 ... N )  e. 
Fin )
7165, 68, 69, 70reprfi 30694 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  (
( 1 ... N
) (repr `  S
) m )  e. 
Fin )
723adantr 481 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  Z  e.  CC )
73 fz0ssnn0 12435 . . . . . . . 8  |-  ( 0 ... ( S  x.  N ) )  C_  NN0
7473, 67sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  m  e.  NN0 )
7572, 74expcld 13008 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  ( Z ^ m )  e.  CC )
7647a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  ( 0..^ S )  e.  Fin )
779ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N ) ) )  /\  c  e.  ( ( 1 ... N
) (repr `  S
) m ) )  /\  a  e.  ( 0..^ S ) )  ->  ( (𝟭 `  NN ) `  A ) : NN --> { 0 ,  1 } )
7832a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  ( 1 ... N )  C_  NN )
7968adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  m  e.  ZZ )
8069adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  S  e.  NN0 )
81 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )
8278, 79, 80, 81reprf 30690 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  c :
( 0..^ S ) --> ( 1 ... N
) )
8382ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N ) ) )  /\  c  e.  ( ( 1 ... N
) (repr `  S
) m ) )  /\  a  e.  ( 0..^ S ) )  ->  ( c `  a )  e.  ( 1 ... N ) )
8432, 83sseldi 3601 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N ) ) )  /\  c  e.  ( ( 1 ... N
) (repr `  S
) m ) )  /\  a  e.  ( 0..^ S ) )  ->  ( c `  a )  e.  NN )
8577, 84ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N ) ) )  /\  c  e.  ( ( 1 ... N
) (repr `  S
) m ) )  /\  a  e.  ( 0..^ S ) )  ->  ( ( (𝟭 `  NN ) `  A
) `  ( c `  a ) )  e. 
{ 0 ,  1 } )
8613, 85sseldi 3601 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N ) ) )  /\  c  e.  ( ( 1 ... N
) (repr `  S
) m ) )  /\  a  e.  ( 0..^ S ) )  ->  ( ( (𝟭 `  NN ) `  A
) `  ( c `  a ) )  e.  CC )
8776, 86fprodcl 14682 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  prod_ a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) )  e.  CC )
8871, 75, 87fsummulc1 14517 . . . . 5  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  ( sum_ c  e.  ( ( 1 ... N ) (repr `  S )
m ) prod_ a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) )  x.  ( Z ^ m ) )  =  sum_ c  e.  ( ( 1 ... N
) (repr `  S
) m ) (
prod_ a  e.  (
0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) )  x.  ( Z ^ m ) ) )
897adantr 481 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  A  C_  NN )
9089, 68, 69, 70, 65hashreprin 30698 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  ( # `
 ( ( A  i^i  ( 1 ... N ) ) (repr `  S ) m ) )  =  sum_ c  e.  ( ( 1 ... N ) (repr `  S ) m )
prod_ a  e.  (
0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) ) )
9190oveq1d 6665 . . . . 5  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  (
( # `  ( ( A  i^i  ( 1 ... N ) ) (repr `  S )
m ) )  x.  ( Z ^ m
) )  =  (
sum_ c  e.  ( ( 1 ... N
) (repr `  S
) m ) prod_
a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  (
c `  a )
)  x.  ( Z ^ m ) ) )
9224fveq1d 6193 . . . . . . . . . 10  |-  ( a  e.  ( 0..^ S )  ->  ( (
( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A ) } ) `
 a ) `  ( c `  a
) )  =  ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) ) )
9392adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  a  e.  ( 0..^ S ) )  ->  ( (
( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A ) } ) `
 a ) `  ( c `  a
) )  =  ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) ) )
9493prodeq2dv 14653 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  prod_ a  e.  ( 0..^ S ) ( ( ( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A
) } ) `  a ) `  (
c `  a )
)  =  prod_ a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) ) )
9594adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  prod_ a  e.  ( 0..^ S ) ( ( ( ( 0..^ S )  X. 
{ ( (𝟭 `  NN ) `  A ) } ) `  a
) `  ( c `  a ) )  = 
prod_ a  e.  (
0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) ) )
9695oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  /\  c  e.  ( ( 1 ... N ) (repr `  S ) m ) )  ->  ( prod_ a  e.  ( 0..^ S ) ( ( ( ( 0..^ S )  X.  { ( (𝟭 `  NN ) `  A
) } ) `  a ) `  (
c `  a )
)  x.  ( Z ^ m ) )  =  ( prod_ a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) )  x.  ( Z ^ m ) ) )
9796sumeq2dv 14433 . . . . 5  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  sum_ c  e.  ( ( 1 ... N ) (repr `  S ) m ) ( prod_ a  e.  ( 0..^ S ) ( ( ( ( 0..^ S )  X.  {
( (𝟭 `  NN ) `  A ) } ) `
 a ) `  ( c `  a
) )  x.  ( Z ^ m ) )  =  sum_ c  e.  ( ( 1 ... N
) (repr `  S
) m ) (
prod_ a  e.  (
0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) )  x.  ( Z ^ m ) ) )
9888, 91, 973eqtr4rd 2667 . . . 4  |-  ( (
ph  /\  m  e.  ( 0 ... ( S  x.  N )
) )  ->  sum_ c  e.  ( ( 1 ... N ) (repr `  S ) m ) ( prod_ a  e.  ( 0..^ S ) ( ( ( ( 0..^ S )  X.  {
( (𝟭 `  NN ) `  A ) } ) `
 a ) `  ( c `  a
) )  x.  ( Z ^ m ) )  =  ( ( # `  ( ( A  i^i  ( 1 ... N
) ) (repr `  S ) m ) )  x.  ( Z ^ m ) ) )
9998sumeq2dv 14433 . . 3  |-  ( ph  -> 
sum_ m  e.  (
0 ... ( S  x.  N ) ) sum_ c  e.  ( (
1 ... N ) (repr `  S ) m ) ( prod_ a  e.  ( 0..^ S ) ( ( ( ( 0..^ S )  X.  {
( (𝟭 `  NN ) `  A ) } ) `
 a ) `  ( c `  a
) )  x.  ( Z ^ m ) )  =  sum_ m  e.  ( 0 ... ( S  x.  N ) ) ( ( # `  (
( A  i^i  (
1 ... N ) ) (repr `  S )
m ) )  x.  ( Z ^ m
) ) )
10023, 64, 993eqtr3d 2664 . 2  |-  ( ph  ->  ( sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
) ^ S )  =  sum_ m  e.  ( 0 ... ( S  x.  N ) ) ( ( # `  (
( A  i^i  (
1 ... N ) ) (repr `  S )
m ) )  x.  ( Z ^ m
) ) )
101 breprexpnat.p . . 3  |-  P  = 
sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
)
102101oveq1i 6660 . 2  |-  ( P ^ S )  =  ( sum_ b  e.  ( A  i^i  ( 1 ... N ) ) ( Z ^ b
) ^ S )
103 breprexpnat.r . . . . 5  |-  R  =  ( # `  (
( A  i^i  (
1 ... N ) ) (repr `  S )
m ) )
104103oveq1i 6660 . . . 4  |-  ( R  x.  ( Z ^
m ) )  =  ( ( # `  (
( A  i^i  (
1 ... N ) ) (repr `  S )
m ) )  x.  ( Z ^ m
) )
105104a1i 11 . . 3  |-  ( m  e.  ( 0 ... ( S  x.  N
) )  ->  ( R  x.  ( Z ^ m ) )  =  ( ( # `  ( ( A  i^i  ( 1 ... N
) ) (repr `  S ) m ) )  x.  ( Z ^ m ) ) )
106105sumeq2i 14429 . 2  |-  sum_ m  e.  ( 0 ... ( S  x.  N )
) ( R  x.  ( Z ^ m ) )  =  sum_ m  e.  ( 0 ... ( S  x.  N )
) ( ( # `  ( ( A  i^i  ( 1 ... N
) ) (repr `  S ) m ) )  x.  ( Z ^ m ) )
107100, 102, 1063eqtr4g 2681 1  |-  ( ph  ->  ( P ^ S
)  =  sum_ m  e.  ( 0 ... ( S  x.  N )
) ( R  x.  ( Z ^ m ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   {cpr 4179    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   ^cexp 12860   #chash 13117   sum_csu 14416   prod_cprod 14635  𝟭cind 30072  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-ind 30073  df-repr 30687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator