MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fermltl Structured version   Visualization version   Unicode version

Theorem fermltl 15489
Description: Fermat's little theorem. When  P is prime,  A ^ P  ==  A (mod  P) for any  A, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
fermltl  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )

Proof of Theorem fermltl
StepHypRef Expression
1 prmnn 15388 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 dvdsval3 14987 . . . 4  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
31, 2sylan 488 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
4 simp2 1062 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  A  e.  ZZ )
5 0zd 11389 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  0  e.  ZZ )
613ad2ant1 1082 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  P  e.  NN )
76nnnn0d 11351 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  P  e.  NN0 )
86nnrpd 11870 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  P  e.  RR+ )
9 simp3 1063 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  ( A  mod  P )  =  0 )
10 0mod 12701 . . . . . . . 8  |-  ( P  e.  RR+  ->  ( 0  mod  P )  =  0 )
118, 10syl 17 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  (
0  mod  P )  =  0 )
129, 11eqtr4d 2659 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  ( A  mod  P )  =  ( 0  mod  P
) )
13 modexp 12999 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  0  e.  ZZ )  /\  ( P  e. 
NN0  /\  P  e.  RR+ )  /\  ( A  mod  P )  =  ( 0  mod  P
) )  ->  (
( A ^ P
)  mod  P )  =  ( ( 0 ^ P )  mod 
P ) )
144, 5, 7, 8, 12, 13syl221anc 1337 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  (
( A ^ P
)  mod  P )  =  ( ( 0 ^ P )  mod 
P ) )
1560expd 13024 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  (
0 ^ P )  =  0 )
1615oveq1d 6665 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  (
( 0 ^ P
)  mod  P )  =  ( 0  mod 
P ) )
1712, 16eqtr4d 2659 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  ( A  mod  P )  =  ( ( 0 ^ P )  mod  P
) )
1814, 17eqtr4d 2659 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  mod  P )  =  0 )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
19183expia 1267 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A  mod  P
)  =  0  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) )
203, 19sylbid 230 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  A  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) ) )
21 coprm 15423 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
22 prmz 15389 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
23 gcdcom 15235 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ )  ->  ( P  gcd  A
)  =  ( A  gcd  P ) )
2422, 23sylan 488 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  gcd  A )  =  ( A  gcd  P
) )
2524eqeq1d 2624 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( P  gcd  A
)  =  1  <->  ( A  gcd  P )  =  1 ) )
2621, 25bitrd 268 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( A  gcd  P )  =  1 ) )
27 simp2 1062 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  A  e.  ZZ )
2813ad2ant1 1082 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  P  e.  NN )
2928phicld 15477 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  e.  NN )
3029nnnn0d 11351 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  e. 
NN0 )
31 zexpcl 12875 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
3227, 30, 31syl2anc 693 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
3332zred 11482 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  e.  RR )
34 1red 10055 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  1  e.  RR )
3528nnrpd 11870 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  P  e.  RR+ )
36 eulerth 15488 . . . . . . 7  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
371, 36syl3an1 1359 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
38 modmul1 12723 . . . . . 6  |-  ( ( ( ( A ^
( phi `  P
) )  e.  RR  /\  1  e.  RR )  /\  ( A  e.  ZZ  /\  P  e.  RR+ )  /\  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( ( A ^
( phi `  P
) )  x.  A
)  mod  P )  =  ( ( 1  x.  A )  mod 
P ) )
3933, 34, 27, 35, 37, 38syl221anc 1337 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( ( A ^
( phi `  P
) )  x.  A
)  mod  P )  =  ( ( 1  x.  A )  mod 
P ) )
40 phiprm 15482 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
41403ad2ant1 1082 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  =  ( P  -  1 ) )
4241oveq2d 6666 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ ( P  -  1 ) ) )
4342oveq1d 6665 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  x.  A )  =  ( ( A ^
( P  -  1 ) )  x.  A
) )
4427zcnd 11483 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  A  e.  CC )
45 expm1t 12888 . . . . . . . 8  |-  ( ( A  e.  CC  /\  P  e.  NN )  ->  ( A ^ P
)  =  ( ( A ^ ( P  -  1 ) )  x.  A ) )
4644, 28, 45syl2anc 693 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ P )  =  ( ( A ^
( P  -  1 ) )  x.  A
) )
4743, 46eqtr4d 2659 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  x.  A )  =  ( A ^ P
) )
4847oveq1d 6665 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( ( A ^
( phi `  P
) )  x.  A
)  mod  P )  =  ( ( A ^ P )  mod 
P ) )
4944mulid2d 10058 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
1  x.  A )  =  A )
5049oveq1d 6665 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( 1  x.  A
)  mod  P )  =  ( A  mod  P ) )
5139, 48, 503eqtr3d 2664 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
52513expia 1267 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A  gcd  P
)  =  1  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) )
5326, 52sylbid 230 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) )
5420, 53pm2.61d 170 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832    mod cmo 12668   ^cexp 12860    || cdvds 14983    gcd cgcd 15216   Primecprime 15385   phicphi 15469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator