MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phiprm Structured version   Visualization version   Unicode version

Theorem phiprm 15482
Description: Value of the Euler  phi function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
phiprm  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )

Proof of Theorem phiprm
StepHypRef Expression
1 1nn 11031 . . 3  |-  1  e.  NN
2 phiprmpw 15481 . . 3  |-  ( ( P  e.  Prime  /\  1  e.  NN )  ->  ( phi `  ( P ^
1 ) )  =  ( ( P ^
( 1  -  1 ) )  x.  ( P  -  1 ) ) )
31, 2mpan2 707 . 2  |-  ( P  e.  Prime  ->  ( phi `  ( P ^ 1 ) )  =  ( ( P ^ (
1  -  1 ) )  x.  ( P  -  1 ) ) )
4 prmz 15389 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
54zcnd 11483 . . . 4  |-  ( P  e.  Prime  ->  P  e.  CC )
65exp1d 13003 . . 3  |-  ( P  e.  Prime  ->  ( P ^ 1 )  =  P )
76fveq2d 6195 . 2  |-  ( P  e.  Prime  ->  ( phi `  ( P ^ 1 ) )  =  ( phi `  P ) )
8 1m1e0 11089 . . . . . 6  |-  ( 1  -  1 )  =  0
98oveq2i 6661 . . . . 5  |-  ( P ^ ( 1  -  1 ) )  =  ( P ^ 0 )
105exp0d 13002 . . . . 5  |-  ( P  e.  Prime  ->  ( P ^ 0 )  =  1 )
119, 10syl5eq 2668 . . . 4  |-  ( P  e.  Prime  ->  ( P ^ ( 1  -  1 ) )  =  1 )
1211oveq1d 6665 . . 3  |-  ( P  e.  Prime  ->  ( ( P ^ ( 1  -  1 ) )  x.  ( P  - 
1 ) )  =  ( 1  x.  ( P  -  1 ) ) )
13 ax-1cn 9994 . . . . 5  |-  1  e.  CC
14 subcl 10280 . . . . 5  |-  ( ( P  e.  CC  /\  1  e.  CC )  ->  ( P  -  1 )  e.  CC )
155, 13, 14sylancl 694 . . . 4  |-  ( P  e.  Prime  ->  ( P  -  1 )  e.  CC )
1615mulid2d 10058 . . 3  |-  ( P  e.  Prime  ->  ( 1  x.  ( P  - 
1 ) )  =  ( P  -  1 ) )
1712, 16eqtrd 2656 . 2  |-  ( P  e.  Prime  ->  ( ( P ^ ( 1  -  1 ) )  x.  ( P  - 
1 ) )  =  ( P  -  1 ) )
183, 7, 173eqtr3d 2664 1  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266   NNcn 11020   ^cexp 12860   Primecprime 15385   phicphi 15469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  fermltl  15489  prmdiv  15490  vfermltl  15506  pockthlem  15609  lgslem1  25022  lgsqrlem2  25072  fmtnoprmfac1  41477
  Copyright terms: Public domain W3C validator