Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem94 Structured version   Visualization version   Unicode version

Theorem fourierdlem94 40417
Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem94.f  |-  ( ph  ->  F : RR --> RR )
fourierdlem94.t  |-  T  =  ( 2  x.  pi )
fourierdlem94.per  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
fourierdlem94.x  |-  ( ph  ->  X  e.  RR )
fourierdlem94.p  |-  P  =  ( n  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... n ) )  |  ( ( ( p `
 0 )  = 
-u pi  /\  (
p `  n )  =  pi )  /\  A. i  e.  ( 0..^ n ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem94.m  |-  ( ph  ->  M  e.  NN )
fourierdlem94.q  |-  ( ph  ->  Q  e.  ( P `
 M ) )
fourierdlem94.dvcn  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( RR 
_D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
fourierdlem94.dvlb  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
)  =/=  (/) )
fourierdlem94.dvub  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) )  =/=  (/) )
Assertion
Ref Expression
fourierdlem94  |-  ( ph  ->  ( ( ( F  |`  ( -oo (,) X
) ) lim CC  X
)  =/=  (/)  /\  (
( F  |`  ( X (,) +oo ) ) lim
CC  X )  =/=  (/) ) )
Distinct variable groups:    i, F, n, x    i, M, x, n    M, p, i, n    Q, i, x, n    Q, p    T, i, x, n    T, p    i, X, x, n    X, p    ph, i, x, n
Allowed substitution hints:    ph( p)    P( x, i, n, p)    F( p)

Proof of Theorem fourierdlem94
Dummy variables  k 
j  w  y  t  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pire 24210 . . . . 5  |-  pi  e.  RR
21renegcli 10342 . . . 4  |-  -u pi  e.  RR
32a1i 11 . . 3  |-  ( ph  -> 
-u pi  e.  RR )
41a1i 11 . . 3  |-  ( ph  ->  pi  e.  RR )
5 negpilt0 39492 . . . . 5  |-  -u pi  <  0
6 pipos 24212 . . . . 5  |-  0  <  pi
7 0re 10040 . . . . . 6  |-  0  e.  RR
82, 7, 1lttri 10163 . . . . 5  |-  ( (
-u pi  <  0  /\  0  <  pi )  ->  -u pi  <  pi )
95, 6, 8mp2an 708 . . . 4  |-  -u pi  <  pi
109a1i 11 . . 3  |-  ( ph  -> 
-u pi  <  pi )
11 fourierdlem94.p . . 3  |-  P  =  ( n  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... n ) )  |  ( ( ( p `
 0 )  = 
-u pi  /\  (
p `  n )  =  pi )  /\  A. i  e.  ( 0..^ n ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
12 picn 24211 . . . . 5  |-  pi  e.  CC
13122timesi 11147 . . . 4  |-  ( 2  x.  pi )  =  ( pi  +  pi )
14 fourierdlem94.t . . . 4  |-  T  =  ( 2  x.  pi )
1512, 12subnegi 10360 . . . 4  |-  ( pi 
-  -u pi )  =  ( pi  +  pi )
1613, 14, 153eqtr4i 2654 . . 3  |-  T  =  ( pi  -  -u pi )
17 fourierdlem94.m . . 3  |-  ( ph  ->  M  e.  NN )
18 fourierdlem94.q . . 3  |-  ( ph  ->  Q  e.  ( P `
 M ) )
19 ssid 3624 . . . 4  |-  RR  C_  RR
2019a1i 11 . . 3  |-  ( ph  ->  RR  C_  RR )
21 fourierdlem94.f . . 3  |-  ( ph  ->  F : RR --> RR )
22 simp2 1062 . . . 4  |-  ( (
ph  /\  x  e.  RR  /\  k  e.  ZZ )  ->  x  e.  RR )
23 zre 11381 . . . . . 6  |-  ( k  e.  ZZ  ->  k  e.  RR )
24233ad2ant3 1084 . . . . 5  |-  ( (
ph  /\  x  e.  RR  /\  k  e.  ZZ )  ->  k  e.  RR )
25 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
2625, 1remulcli 10054 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  RR
2726a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  pi )  e.  RR )
2814, 27syl5eqel 2705 . . . . . . 7  |-  ( ph  ->  T  e.  RR )
2928adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  T  e.  RR )
30293adant2 1080 . . . . 5  |-  ( (
ph  /\  x  e.  RR  /\  k  e.  ZZ )  ->  T  e.  RR )
3124, 30remulcld 10070 . . . 4  |-  ( (
ph  /\  x  e.  RR  /\  k  e.  ZZ )  ->  ( k  x.  T )  e.  RR )
3222, 31readdcld 10069 . . 3  |-  ( (
ph  /\  x  e.  RR  /\  k  e.  ZZ )  ->  ( x  +  ( k  x.  T
) )  e.  RR )
33 simp1 1061 . . . 4  |-  ( (
ph  /\  x  e.  RR  /\  k  e.  ZZ )  ->  ph )
34 simp3 1063 . . . 4  |-  ( (
ph  /\  x  e.  RR  /\  k  e.  ZZ )  ->  k  e.  ZZ )
35 ax-resscn 9993 . . . . . . . . 9  |-  RR  C_  CC
3635a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  C_  CC )
3721, 36fssd 6057 . . . . . . 7  |-  ( ph  ->  F : RR --> CC )
3837adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  F : RR
--> CC )
3938adantr 481 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  RR )  ->  F : RR --> CC )
4029adantr 481 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  RR )  ->  T  e.  RR )
41 simplr 792 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  RR )  ->  k  e.  ZZ )
42 simpr 477 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  RR )  ->  x  e.  RR )
43 eleq1 2689 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  RR  <->  y  e.  RR ) )
4443anbi2d 740 . . . . . . . 8  |-  ( x  =  y  ->  (
( ph  /\  x  e.  RR )  <->  ( ph  /\  y  e.  RR ) ) )
45 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  +  T )  =  ( y  +  T ) )
4645fveq2d 6195 . . . . . . . . 9  |-  ( x  =  y  ->  ( F `  ( x  +  T ) )  =  ( F `  (
y  +  T ) ) )
47 fveq2 6191 . . . . . . . . 9  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
4846, 47eqeq12d 2637 . . . . . . . 8  |-  ( x  =  y  ->  (
( F `  (
x  +  T ) )  =  ( F `
 x )  <->  ( F `  ( y  +  T
) )  =  ( F `  y ) ) )
4944, 48imbi12d 334 . . . . . . 7  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  RR )  ->  ( F `  (
x  +  T ) )  =  ( F `
 x ) )  <-> 
( ( ph  /\  y  e.  RR )  ->  ( F `  (
y  +  T ) )  =  ( F `
 y ) ) ) )
50 fourierdlem94.per . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
5149, 50chvarv 2263 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 ( y  +  T ) )  =  ( F `  y
) )
5251ad4ant14 1293 . . . . 5  |-  ( ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  RR )  /\  y  e.  RR )  ->  ( F `  ( y  +  T
) )  =  ( F `  y ) )
5339, 40, 41, 42, 52fperiodmul 39518 . . . 4  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  RR )  ->  ( F `  ( x  +  ( k  x.  T ) ) )  =  ( F `  x ) )
5433, 34, 22, 53syl21anc 1325 . . 3  |-  ( (
ph  /\  x  e.  RR  /\  k  e.  ZZ )  ->  ( F `  ( x  +  (
k  x.  T ) ) )  =  ( F `  x ) )
5535a1i 11 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  RR  C_  CC )
56 ioossre 12235 . . . . . . . 8  |-  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  C_  RR
5756a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  C_  RR )
5821, 57fssresd 6071 . . . . . 6  |-  ( ph  ->  ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) : ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) --> RR )
5958, 36fssd 6057 . . . . 5  |-  ( ph  ->  ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) : ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) --> CC )
6059adantr 481 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) : ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) --> CC )
6156a1i 11 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  C_  RR )
6237adantr 481 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  F : RR --> CC )
6319a1i 11 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  RR  C_  RR )
64 eqid 2622 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
6564tgioo2 22606 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
6664, 65dvres 23675 . . . . . . 7  |-  ( ( ( RR  C_  CC  /\  F : RR --> CC )  /\  ( RR  C_  RR  /\  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) )  =  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) ) )
6755, 62, 63, 61, 66syl22anc 1327 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( RR  _D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) )  =  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) ) )
6867dmeqd 5326 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  dom  ( RR  _D  ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) )  =  dom  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) ) )
69 ioontr 39736 . . . . . . . 8  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  =  ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) )
7069reseq2i 5393 . . . . . . 7  |-  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) )  =  ( ( RR 
_D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )
7170dmeqi 5325 . . . . . 6  |-  dom  (
( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) )  =  dom  ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )
7271a1i 11 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  dom  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) )  =  dom  ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) )
73 fourierdlem94.dvcn . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( RR 
_D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
74 cncff 22696 . . . . . 6  |-  ( ( ( RR  _D  F
)  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) )  e.  ( ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) -cn-> CC )  ->  ( ( RR 
_D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) : ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) --> CC )
75 fdm 6051 . . . . . 6  |-  ( ( ( RR  _D  F
)  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) ) : ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) --> CC  ->  dom  ( ( RR  _D  F )  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) )  =  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )
7673, 74, 753syl 18 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  dom  ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  =  ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) )
7768, 72, 763eqtrd 2660 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  dom  ( RR  _D  ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) )  =  ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) )
78 dvcn 23684 . . . 4  |-  ( ( ( RR  C_  CC  /\  ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) : ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) --> CC 
/\  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  C_  RR )  /\  dom  ( RR 
_D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) )  =  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  ->  ( F  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) )  e.  ( ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) -cn-> CC ) )
7955, 60, 61, 77, 78syl31anc 1329 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
8061, 35syl6ss 3615 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  C_  CC )
8111fourierdlem2 40326 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( Q  e.  ( P `  M )  <->  ( Q  e.  ( RR  ^m  (
0 ... M ) )  /\  ( ( ( Q `  0 )  =  -u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
8217, 81syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  e.  ( P `  M )  <-> 
( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  -u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) ) )
8318, 82mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( Q  e.  ( RR  ^m  ( 0 ... M ) )  /\  ( ( ( Q `  0 )  =  -u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) ) )
8483simpld 475 . . . . . . . . 9  |-  ( ph  ->  Q  e.  ( RR 
^m  ( 0 ... M ) ) )
85 elmapi 7879 . . . . . . . . 9  |-  ( Q  e.  ( RR  ^m  ( 0 ... M
) )  ->  Q : ( 0 ... M ) --> RR )
8684, 85syl 17 . . . . . . . 8  |-  ( ph  ->  Q : ( 0 ... M ) --> RR )
8786adantr 481 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  Q : ( 0 ... M ) --> RR )
88 elfzofz 12485 . . . . . . . 8  |-  ( i  e.  ( 0..^ M )  ->  i  e.  ( 0 ... M
) )
8988adantl 482 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  i  e.  ( 0 ... M ) )
9087, 89ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  e.  RR )
9190rexrd 10089 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  e.  RR* )
92 fzofzp1 12565 . . . . . . 7  |-  ( i  e.  ( 0..^ M )  ->  ( i  +  1 )  e.  ( 0 ... M
) )
9392adantl 482 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( i  +  1 )  e.  ( 0 ... M ) )
9487, 93ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  ( i  +  1 ) )  e.  RR )
9583simprrd 797 . . . . . 6  |-  ( ph  ->  A. i  e.  ( 0..^ M ) ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
9695r19.21bi 2932 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  <  ( Q `  ( i  +  1 ) ) )
9764, 91, 94, 96lptioo2cn 39877 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  ( i  +  1 ) )  e.  ( ( limPt `  ( TopOpen ` fld ) ) `  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) )
9858adantr 481 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) : ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) --> RR )
9936, 37, 20dvbss 23665 . . . . . . . 8  |-  ( ph  ->  dom  ( RR  _D  F )  C_  RR )
100 dvfre 23714 . . . . . . . . 9  |-  ( ( F : RR --> RR  /\  RR  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
10121, 20, 100syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
10283simprd 479 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Q `
 0 )  = 
-u pi  /\  ( Q `  M )  =  pi )  /\  A. i  e.  ( 0..^ M ) ( Q `
 i )  < 
( Q `  (
i  +  1 ) ) ) )
103102simplld 791 . . . . . . . 8  |-  ( ph  ->  ( Q `  0
)  =  -u pi )
104102simplrd 793 . . . . . . . 8  |-  ( ph  ->  ( Q `  M
)  =  pi )
10573, 74syl 17 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( RR 
_D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) : ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) --> CC )
10694rexrd 10089 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  ( i  +  1 ) )  e.  RR* )
10764, 106, 90, 96lptioo1cn 39878 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( Q `  i )  e.  ( ( limPt `  ( TopOpen ` fld ) ) `  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) )
108 fourierdlem94.dvlb . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
)  =/=  (/) )
109105, 80, 107, 108, 64ellimciota 39846 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( iota x x  e.  ( (
( RR  _D  F
)  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) ) lim CC  ( Q `  i ) ) )  e.  ( ( ( RR  _D  F )  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 i ) ) )
110 fourierdlem94.dvub . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) )  =/=  (/) )
111105, 80, 97, 110, 64ellimciota 39846 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( iota x x  e.  ( (
( RR  _D  F
)  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( RR  _D  F )  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
11223adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  k  e.  RR )
113112, 29remulcld 10070 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( k  x.  T )  e.  RR )
11438adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  t  e.  RR )  ->  F : RR --> CC )
11529adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  t  e.  RR )  ->  T  e.  RR )
116 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  t  e.  RR )  ->  k  e.  ZZ )
117 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  t  e.  RR )  ->  t  e.  RR )
11850ad4ant14 1293 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ZZ )  /\  t  e.  RR )  /\  x  e.  RR )  ->  ( F `  ( x  +  T
) )  =  ( F `  x ) )
119114, 115, 116, 117, 118fperiodmul 39518 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  t  e.  RR )  ->  ( F `  ( t  +  ( k  x.  T ) ) )  =  ( F `  t ) )
120 eqid 2622 . . . . . . . . . . 11  |-  ( RR 
_D  F )  =  ( RR  _D  F
)
12138, 113, 119, 120fperdvper 40133 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  t  e.  dom  ( RR  _D  F ) )  -> 
( ( t  +  ( k  x.  T
) )  e.  dom  ( RR  _D  F
)  /\  ( ( RR  _D  F ) `  ( t  +  ( k  x.  T ) ) )  =  ( ( RR  _D  F
) `  t )
) )
122121an32s 846 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  dom  ( RR  _D  F ) )  /\  k  e.  ZZ )  ->  ( ( t  +  ( k  x.  T
) )  e.  dom  ( RR  _D  F
)  /\  ( ( RR  _D  F ) `  ( t  +  ( k  x.  T ) ) )  =  ( ( RR  _D  F
) `  t )
) )
123122simpld 475 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  dom  ( RR  _D  F ) )  /\  k  e.  ZZ )  ->  ( t  +  ( k  x.  T ) )  e.  dom  ( RR  _D  F ) )
124122simprd 479 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  dom  ( RR  _D  F ) )  /\  k  e.  ZZ )  ->  ( ( RR  _D  F ) `  (
t  +  ( k  x.  T ) ) )  =  ( ( RR  _D  F ) `
 t ) )
125 fveq2 6191 . . . . . . . . . 10  |-  ( j  =  i  ->  ( Q `  j )  =  ( Q `  i ) )
126 oveq1 6657 . . . . . . . . . . 11  |-  ( j  =  i  ->  (
j  +  1 )  =  ( i  +  1 ) )
127126fveq2d 6195 . . . . . . . . . 10  |-  ( j  =  i  ->  ( Q `  ( j  +  1 ) )  =  ( Q `  ( i  +  1 ) ) )
128125, 127oveq12d 6668 . . . . . . . . 9  |-  ( j  =  i  ->  (
( Q `  j
) (,) ( Q `
 ( j  +  1 ) ) )  =  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) )
129128cbvmptv 4750 . . . . . . . 8  |-  ( j  e.  ( 0..^ M )  |->  ( ( Q `
 j ) (,) ( Q `  (
j  +  1 ) ) ) )  =  ( i  e.  ( 0..^ M )  |->  ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) )
130 eqid 2622 . . . . . . . 8  |-  ( t  e.  RR  |->  ( t  +  ( ( |_
`  ( ( pi 
-  t )  /  T ) )  x.  T ) ) )  =  ( t  e.  RR  |->  ( t  +  ( ( |_ `  ( ( pi  -  t )  /  T
) )  x.  T
) ) )
13199, 101, 3, 4, 10, 16, 17, 86, 103, 104, 73, 109, 111, 123, 124, 129, 130fourierdlem71 40394 . . . . . . 7  |-  ( ph  ->  E. z  e.  RR  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )
132131adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  E. z  e.  RR  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )
133 nfv 1843 . . . . . . . . . 10  |-  F/ t ( ph  /\  i  e.  ( 0..^ M ) )
134 nfra1 2941 . . . . . . . . . 10  |-  F/ t A. t  e.  dom  ( RR  _D  F
) ( abs `  (
( RR  _D  F
) `  t )
)  <_  z
135133, 134nfan 1828 . . . . . . . . 9  |-  F/ t ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )
13667, 70syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( RR  _D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) )  =  ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) )
137136fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( RR 
_D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) ) `  t )  =  ( ( ( RR  _D  F )  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) `  t ) )
138 fvres 6207 . . . . . . . . . . . . . 14  |-  ( t  e.  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  ->  (
( ( RR  _D  F )  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) `  t )  =  ( ( RR 
_D  F ) `  t ) )
139137, 138sylan9eq 2676 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  ->  (
( RR  _D  ( F  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) ) ) `
 t )  =  ( ( RR  _D  F ) `  t
) )
140139fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  ->  ( abs `  ( ( RR 
_D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) ) `  t ) )  =  ( abs `  (
( RR  _D  F
) `  t )
) )
141140adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) )  -> 
( abs `  (
( RR  _D  ( F  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) ) ) `
 t ) )  =  ( abs `  (
( RR  _D  F
) `  t )
) )
142 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) )  ->  A. t  e.  dom  ( RR  _D  F
) ( abs `  (
( RR  _D  F
) `  t )
)  <_  z )
143 ssdmres 5420 . . . . . . . . . . . . . . 15  |-  ( ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) 
C_  dom  ( RR  _D  F )  <->  dom  ( ( RR  _D  F )  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  =  ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) )
14476, 143sylibr 224 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) )  C_  dom  ( RR  _D  F
) )
145144ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) )  -> 
( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  C_  dom  ( RR 
_D  F ) )
146 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) )  -> 
t  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )
147145, 146sseldd 3604 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) )  -> 
t  e.  dom  ( RR  _D  F ) )
148 rspa 2930 . . . . . . . . . . . 12  |-  ( ( A. t  e.  dom  ( RR  _D  F
) ( abs `  (
( RR  _D  F
) `  t )
)  <_  z  /\  t  e.  dom  ( RR 
_D  F ) )  ->  ( abs `  (
( RR  _D  F
) `  t )
)  <_  z )
149142, 147, 148syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) )  -> 
( abs `  (
( RR  _D  F
) `  t )
)  <_  z )
150141, 149eqbrtrd 4675 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `
 t ) )  <_  z )  /\  t  e.  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) )  -> 
( abs `  (
( RR  _D  ( F  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) ) ) `
 t ) )  <_  z )
151150ex 450 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `  t
) )  <_  z
)  ->  ( t  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) )  ->  ( abs `  ( ( RR  _D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) ) `  t ) )  <_  z )
)
152135, 151ralrimi 2957 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `  t
) )  <_  z
)  ->  A. t  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ( abs `  (
( RR  _D  ( F  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) ) ) `
 t ) )  <_  z )
153152ex 450 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( A. t  e.  dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `  t
) )  <_  z  ->  A. t  e.  ( ( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ( abs `  (
( RR  _D  ( F  |`  ( ( Q `
 i ) (,) ( Q `  (
i  +  1 ) ) ) ) ) `
 t ) )  <_  z ) )
154153reximdv 3016 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( E. z  e.  RR  A. t  e. 
dom  ( RR  _D  F ) ( abs `  ( ( RR  _D  F ) `  t
) )  <_  z  ->  E. z  e.  RR  A. t  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ( abs `  ( ( RR  _D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) ) `  t ) )  <_ 
z ) )
155132, 154mpd 15 . . . . 5  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  E. z  e.  RR  A. t  e.  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ( abs `  ( ( RR  _D  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) ) `  t ) )  <_ 
z )
15690, 94, 98, 77, 155ioodvbdlimc2 40150 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) )  =/=  (/) )
15760, 80, 97, 156, 64ellimciota 39846 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( iota y
y  e.  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) lim CC  ( Q `  ( i  +  1 ) ) ) )  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
158 fourierdlem94.x . . 3  |-  ( ph  ->  X  e.  RR )
159 oveq2 6658 . . . . . . 7  |-  ( y  =  x  ->  (
pi  -  y )  =  ( pi  -  x ) )
160159oveq1d 6665 . . . . . 6  |-  ( y  =  x  ->  (
( pi  -  y
)  /  T )  =  ( ( pi 
-  x )  /  T ) )
161160fveq2d 6195 . . . . 5  |-  ( y  =  x  ->  ( |_ `  ( ( pi 
-  y )  /  T ) )  =  ( |_ `  (
( pi  -  x
)  /  T ) ) )
162161oveq1d 6665 . . . 4  |-  ( y  =  x  ->  (
( |_ `  (
( pi  -  y
)  /  T ) )  x.  T )  =  ( ( |_
`  ( ( pi 
-  x )  /  T ) )  x.  T ) )
163162cbvmptv 4750 . . 3  |-  ( y  e.  RR  |->  ( ( |_ `  ( ( pi  -  y )  /  T ) )  x.  T ) )  =  ( x  e.  RR  |->  ( ( |_
`  ( ( pi 
-  x )  /  T ) )  x.  T ) )
164 id 22 . . . . 5  |-  ( z  =  x  ->  z  =  x )
165 fveq2 6191 . . . . 5  |-  ( z  =  x  ->  (
( y  e.  RR  |->  ( ( |_ `  ( ( pi  -  y )  /  T
) )  x.  T
) ) `  z
)  =  ( ( y  e.  RR  |->  ( ( |_ `  (
( pi  -  y
)  /  T ) )  x.  T ) ) `  x ) )
166164, 165oveq12d 6668 . . . 4  |-  ( z  =  x  ->  (
z  +  ( ( y  e.  RR  |->  ( ( |_ `  (
( pi  -  y
)  /  T ) )  x.  T ) ) `  z ) )  =  ( x  +  ( ( y  e.  RR  |->  ( ( |_ `  ( ( pi  -  y )  /  T ) )  x.  T ) ) `
 x ) ) )
167166cbvmptv 4750 . . 3  |-  ( z  e.  RR  |->  ( z  +  ( ( y  e.  RR  |->  ( ( |_ `  ( ( pi  -  y )  /  T ) )  x.  T ) ) `
 z ) ) )  =  ( x  e.  RR  |->  ( x  +  ( ( y  e.  RR  |->  ( ( |_ `  ( ( pi  -  y )  /  T ) )  x.  T ) ) `
 x ) ) )
1683, 4, 10, 11, 16, 17, 18, 20, 21, 32, 54, 79, 157, 158, 163, 167fourierdlem49 40372 . 2  |-  ( ph  ->  ( ( F  |`  ( -oo (,) X ) ) lim CC  X )  =/=  (/) )
16990, 94, 98, 77, 155ioodvbdlimc1 40148 . . . 4  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) ) lim CC  ( Q `  i )
)  =/=  (/) )
17060, 80, 107, 169, 64ellimciota 39846 . . 3  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( iota y
y  e.  ( ( F  |`  ( ( Q `  i ) (,) ( Q `  (
i  +  1 ) ) ) ) lim CC  ( Q `  i ) ) )  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 i ) ) )
171 biid 251 . . 3  |-  ( ( ( ( ( ph  /\  i  e.  ( 0..^ M ) )  /\  w  e.  ( ( Q `  i ) [,) ( Q `  (
i  +  1 ) ) ) )  /\  k  e.  ZZ )  /\  w  =  ( X  +  ( k  x.  T ) ) )  <-> 
( ( ( (
ph  /\  i  e.  ( 0..^ M ) )  /\  w  e.  ( ( Q `  i
) [,) ( Q `
 ( i  +  1 ) ) ) )  /\  k  e.  ZZ )  /\  w  =  ( X  +  ( k  x.  T
) ) ) )
1723, 4, 10, 11, 16, 17, 18, 21, 32, 54, 79, 170, 158, 163, 167, 171fourierdlem48 40371 . 2  |-  ( ph  ->  ( ( F  |`  ( X (,) +oo )
) lim CC  X )  =/=  (/) )
173168, 172jca 554 1  |-  ( ph  ->  ( ( ( F  |`  ( -oo (,) X
) ) lim CC  X
)  =/=  (/)  /\  (
( F  |`  ( X (,) +oo ) ) lim
CC  X )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   iotacio 5849   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   -oocmnf 10072    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   (,)cioo 12175   [,)cico 12177   ...cfz 12326  ..^cfzo 12465   |_cfl 12591   abscabs 13974   picpi 14797   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679   lim CC climc 23626    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem102  40425
  Copyright terms: Public domain W3C validator