Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsummulc1f Structured version   Visualization version   Unicode version

Theorem fsummulc1f 39802
Description: Closure of a finite sum of complex numbers  A ( k ). A version of fsummulc1 14517 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsummulc1f.ph  |-  F/ k
ph
fsummulclf.a  |-  ( ph  ->  A  e.  Fin )
fsummulclf.c  |-  ( ph  ->  C  e.  CC )
fsummulclf.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsummulc1f  |-  ( ph  ->  ( sum_ k  e.  A  B  x.  C )  =  sum_ k  e.  A  ( B  x.  C
) )
Distinct variable groups:    A, k    C, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fsummulc1f
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3542 . . . . 5  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
2 nfcv 2764 . . . . 5  |-  F/_ j A
3 nfcv 2764 . . . . 5  |-  F/_ k A
4 nfcv 2764 . . . . 5  |-  F/_ j B
5 nfcsb1v 3549 . . . . 5  |-  F/_ k [_ j  /  k ]_ B
61, 2, 3, 4, 5cbvsum 14425 . . . 4  |-  sum_ k  e.  A  B  =  sum_ j  e.  A  [_ j  /  k ]_ B
76oveq1i 6660 . . 3  |-  ( sum_ k  e.  A  B  x.  C )  =  (
sum_ j  e.  A  [_ j  /  k ]_ B  x.  C )
87a1i 11 . 2  |-  ( ph  ->  ( sum_ k  e.  A  B  x.  C )  =  ( sum_ j  e.  A  [_ j  / 
k ]_ B  x.  C
) )
9 fsummulclf.a . . 3  |-  ( ph  ->  A  e.  Fin )
10 fsummulclf.c . . 3  |-  ( ph  ->  C  e.  CC )
11 fsummulc1f.ph . . . . . 6  |-  F/ k
ph
12 nfv 1843 . . . . . 6  |-  F/ k  j  e.  A
1311, 12nfan 1828 . . . . 5  |-  F/ k ( ph  /\  j  e.  A )
145nfel1 2779 . . . . 5  |-  F/ k
[_ j  /  k ]_ B  e.  CC
1513, 14nfim 1825 . . . 4  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
16 eleq1 2689 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
1716anbi2d 740 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  j  e.  A ) ) )
181eleq1d 2686 . . . . 5  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
1917, 18imbi12d 334 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC ) ) )
20 fsummulclf.b . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2115, 19, 20chvar 2262 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
229, 10, 21fsummulc1 14517 . 2  |-  ( ph  ->  ( sum_ j  e.  A  [_ j  /  k ]_ B  x.  C )  =  sum_ j  e.  A  ( [_ j  /  k ]_ B  x.  C
) )
23 eqcom 2629 . . . . . . . 8  |-  ( k  =  j  <->  j  =  k )
2423imbi1i 339 . . . . . . 7  |-  ( ( k  =  j  ->  B  =  [_ j  / 
k ]_ B )  <->  ( j  =  k  ->  B  = 
[_ j  /  k ]_ B ) )
25 eqcom 2629 . . . . . . . 8  |-  ( B  =  [_ j  / 
k ]_ B  <->  [_ j  / 
k ]_ B  =  B )
2625imbi2i 326 . . . . . . 7  |-  ( ( j  =  k  ->  B  =  [_ j  / 
k ]_ B )  <->  ( j  =  k  ->  [_ j  /  k ]_ B  =  B ) )
2724, 26bitri 264 . . . . . 6  |-  ( ( k  =  j  ->  B  =  [_ j  / 
k ]_ B )  <->  ( j  =  k  ->  [_ j  /  k ]_ B  =  B ) )
281, 27mpbi 220 . . . . 5  |-  ( j  =  k  ->  [_ j  /  k ]_ B  =  B )
2928oveq1d 6665 . . . 4  |-  ( j  =  k  ->  ( [_ j  /  k ]_ B  x.  C
)  =  ( B  x.  C ) )
30 nfcv 2764 . . . . 5  |-  F/_ k  x.
31 nfcv 2764 . . . . 5  |-  F/_ k C
325, 30, 31nfov 6676 . . . 4  |-  F/_ k
( [_ j  /  k ]_ B  x.  C
)
33 nfcv 2764 . . . 4  |-  F/_ j
( B  x.  C
)
3429, 3, 2, 32, 33cbvsum 14425 . . 3  |-  sum_ j  e.  A  ( [_ j  /  k ]_ B  x.  C )  =  sum_ k  e.  A  ( B  x.  C )
3534a1i 11 . 2  |-  ( ph  -> 
sum_ j  e.  A  ( [_ j  /  k ]_ B  x.  C
)  =  sum_ k  e.  A  ( B  x.  C ) )
368, 22, 353eqtrd 2660 1  |-  ( ph  ->  ( sum_ k  e.  A  B  x.  C )  =  sum_ k  e.  A  ( B  x.  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   [_csb 3533  (class class class)co 6650   Fincfn 7955   CCcc 9934    x. cmul 9941   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  dvmptfprodlem  40159
  Copyright terms: Public domain W3C validator