Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inductionexd Structured version   Visualization version   Unicode version

Theorem inductionexd 38453
Description: Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.)
Assertion
Ref Expression
inductionexd  |-  ( N  e.  NN  ->  3  ||  ( ( 4 ^ N )  +  5 ) )

Proof of Theorem inductionexd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4  |-  ( k  =  1  ->  (
4 ^ k )  =  ( 4 ^ 1 ) )
21oveq1d 6665 . . 3  |-  ( k  =  1  ->  (
( 4 ^ k
)  +  5 )  =  ( ( 4 ^ 1 )  +  5 ) )
32breq2d 4665 . 2  |-  ( k  =  1  ->  (
3  ||  ( (
4 ^ k )  +  5 )  <->  3  ||  ( ( 4 ^ 1 )  +  5 ) ) )
4 oveq2 6658 . . . 4  |-  ( k  =  n  ->  (
4 ^ k )  =  ( 4 ^ n ) )
54oveq1d 6665 . . 3  |-  ( k  =  n  ->  (
( 4 ^ k
)  +  5 )  =  ( ( 4 ^ n )  +  5 ) )
65breq2d 4665 . 2  |-  ( k  =  n  ->  (
3  ||  ( (
4 ^ k )  +  5 )  <->  3  ||  ( ( 4 ^ n )  +  5 ) ) )
7 oveq2 6658 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
4 ^ k )  =  ( 4 ^ ( n  +  1 ) ) )
87oveq1d 6665 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( 4 ^ k
)  +  5 )  =  ( ( 4 ^ ( n  + 
1 ) )  +  5 ) )
98breq2d 4665 . 2  |-  ( k  =  ( n  + 
1 )  ->  (
3  ||  ( (
4 ^ k )  +  5 )  <->  3  ||  ( ( 4 ^ ( n  +  1 ) )  +  5 ) ) )
10 oveq2 6658 . . . 4  |-  ( k  =  N  ->  (
4 ^ k )  =  ( 4 ^ N ) )
1110oveq1d 6665 . . 3  |-  ( k  =  N  ->  (
( 4 ^ k
)  +  5 )  =  ( ( 4 ^ N )  +  5 ) )
1211breq2d 4665 . 2  |-  ( k  =  N  ->  (
3  ||  ( (
4 ^ k )  +  5 )  <->  3  ||  ( ( 4 ^ N )  +  5 ) ) )
13 3z 11410 . . . 4  |-  3  e.  ZZ
14 4z 11411 . . . . . 6  |-  4  e.  ZZ
15 1nn0 11308 . . . . . 6  |-  1  e.  NN0
16 zexpcl 12875 . . . . . 6  |-  ( ( 4  e.  ZZ  /\  1  e.  NN0 )  -> 
( 4 ^ 1 )  e.  ZZ )
1714, 15, 16mp2an 708 . . . . 5  |-  ( 4 ^ 1 )  e.  ZZ
18 5nn 11188 . . . . . 6  |-  5  e.  NN
1918nnzi 11401 . . . . 5  |-  5  e.  ZZ
20 zaddcl 11417 . . . . 5  |-  ( ( ( 4 ^ 1 )  e.  ZZ  /\  5  e.  ZZ )  ->  ( ( 4 ^ 1 )  +  5 )  e.  ZZ )
2117, 19, 20mp2an 708 . . . 4  |-  ( ( 4 ^ 1 )  +  5 )  e.  ZZ
2213, 13, 213pm3.2i 1239 . . 3  |-  ( 3  e.  ZZ  /\  3  e.  ZZ  /\  ( ( 4 ^ 1 )  +  5 )  e.  ZZ )
23 3t3e9 11180 . . . 4  |-  ( 3  x.  3 )  =  9
24 4nn0 11311 . . . . . . 7  |-  4  e.  NN0
2524numexp1 15781 . . . . . 6  |-  ( 4 ^ 1 )  =  4
2625oveq1i 6660 . . . . 5  |-  ( ( 4 ^ 1 )  +  5 )  =  ( 4  +  5 )
27 5cn 11100 . . . . . 6  |-  5  e.  CC
28 4cn 11098 . . . . . 6  |-  4  e.  CC
29 5p4e9 11167 . . . . . 6  |-  ( 5  +  4 )  =  9
3027, 28, 29addcomli 10228 . . . . 5  |-  ( 4  +  5 )  =  9
3126, 30eqtri 2644 . . . 4  |-  ( ( 4 ^ 1 )  +  5 )  =  9
3223, 31eqtr4i 2647 . . 3  |-  ( 3  x.  3 )  =  ( ( 4 ^ 1 )  +  5 )
33 dvds0lem 14992 . . 3  |-  ( ( ( 3  e.  ZZ  /\  3  e.  ZZ  /\  ( ( 4 ^ 1 )  +  5 )  e.  ZZ )  /\  ( 3  x.  3 )  =  ( ( 4 ^ 1 )  +  5 ) )  ->  3  ||  ( ( 4 ^ 1 )  +  5 ) )
3422, 32, 33mp2an 708 . 2  |-  3  ||  ( ( 4 ^ 1 )  +  5 )
3513a1i 11 . . . . 5  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
3  e.  ZZ )
36 4nn 11187 . . . . . . . . . . 11  |-  4  e.  NN
3736a1i 11 . . . . . . . . . 10  |-  ( n  e.  NN  ->  4  e.  NN )
38 nnnn0 11299 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  NN0 )
3937, 38nnexpcld 13030 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
4 ^ n )  e.  NN )
4039nnzd 11481 . . . . . . . 8  |-  ( n  e.  NN  ->  (
4 ^ n )  e.  ZZ )
4140adantr 481 . . . . . . 7  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
( 4 ^ n
)  e.  ZZ )
4219a1i 11 . . . . . . 7  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
5  e.  ZZ )
4341, 42zaddcld 11486 . . . . . 6  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
( ( 4 ^ n )  +  5 )  e.  ZZ )
4414a1i 11 . . . . . 6  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
4  e.  ZZ )
45 simpr 477 . . . . . 6  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
3  ||  ( (
4 ^ n )  +  5 ) )
4635, 43, 44, 45dvdsmultr1d 15020 . . . . 5  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
3  ||  ( (
( 4 ^ n
)  +  5 )  x.  4 ) )
47 dvdsmul1 15003 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  5  e.  ZZ )  ->  3  ||  ( 3  x.  5 ) )
4813, 19, 47mp2an 708 . . . . . 6  |-  3  ||  ( 3  x.  5 )
4948a1i 11 . . . . 5  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
3  ||  ( 3  x.  5 ) )
5043, 44zmulcld 11488 . . . . 5  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
( ( ( 4 ^ n )  +  5 )  x.  4 )  e.  ZZ )
5135, 42zmulcld 11488 . . . . 5  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
( 3  x.  5 )  e.  ZZ )
5235, 46, 49, 50, 51dvds2subd 15017 . . . 4  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
3  ||  ( (
( ( 4 ^ n )  +  5 )  x.  4 )  -  ( 3  x.  5 ) ) )
5339nncnd 11036 . . . . . . . 8  |-  ( n  e.  NN  ->  (
4 ^ n )  e.  CC )
5427a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  5  e.  CC )
5528a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  4  e.  CC )
5653, 54, 55adddird 10065 . . . . . . 7  |-  ( n  e.  NN  ->  (
( ( 4 ^ n )  +  5 )  x.  4 )  =  ( ( ( 4 ^ n )  x.  4 )  +  ( 5  x.  4 ) ) )
5756oveq1d 6665 . . . . . 6  |-  ( n  e.  NN  ->  (
( ( ( 4 ^ n )  +  5 )  x.  4 )  - ; 1 5 )  =  ( ( ( ( 4 ^ n )  x.  4 )  +  ( 5  x.  4 ) )  - ; 1 5 ) )
58 3cn 11095 . . . . . . . . 9  |-  3  e.  CC
59 5t3e15 11635 . . . . . . . . 9  |-  ( 5  x.  3 )  = ; 1
5
6027, 58, 59mulcomli 10047 . . . . . . . 8  |-  ( 3  x.  5 )  = ; 1
5
6160a1i 11 . . . . . . 7  |-  ( n  e.  NN  ->  (
3  x.  5 )  = ; 1 5 )
6261oveq2d 6666 . . . . . 6  |-  ( n  e.  NN  ->  (
( ( ( 4 ^ n )  +  5 )  x.  4 )  -  ( 3  x.  5 ) )  =  ( ( ( ( 4 ^ n
)  +  5 )  x.  4 )  - ; 1 5 ) )
6355, 38expp1d 13009 . . . . . . . 8  |-  ( n  e.  NN  ->  (
4 ^ ( n  +  1 ) )  =  ( ( 4 ^ n )  x.  4 ) )
64 ax-1cn 9994 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
65 3p1e4 11153 . . . . . . . . . . . . . . . 16  |-  ( 3  +  1 )  =  4
6658, 64, 65addcomli 10228 . . . . . . . . . . . . . . 15  |-  ( 1  +  3 )  =  4
6766eqcomi 2631 . . . . . . . . . . . . . 14  |-  4  =  ( 1  +  3 )
6867oveq1i 6660 . . . . . . . . . . . . 13  |-  ( 4  -  3 )  =  ( ( 1  +  3 )  -  3 )
6964, 58pncan3oi 10297 . . . . . . . . . . . . 13  |-  ( ( 1  +  3 )  -  3 )  =  1
7068, 69eqtri 2644 . . . . . . . . . . . 12  |-  ( 4  -  3 )  =  1
7170oveq2i 6661 . . . . . . . . . . 11  |-  ( 5  x.  ( 4  -  3 ) )  =  ( 5  x.  1 )
7227, 28, 58subdii 10479 . . . . . . . . . . 11  |-  ( 5  x.  ( 4  -  3 ) )  =  ( ( 5  x.  4 )  -  (
5  x.  3 ) )
7327mulid1i 10042 . . . . . . . . . . 11  |-  ( 5  x.  1 )  =  5
7471, 72, 733eqtr3ri 2653 . . . . . . . . . 10  |-  5  =  ( ( 5  x.  4 )  -  ( 5  x.  3 ) )
7559eqcomi 2631 . . . . . . . . . . 11  |- ; 1 5  =  ( 5  x.  3 )
7675oveq2i 6661 . . . . . . . . . 10  |-  ( ( 5  x.  4 )  - ; 1 5 )  =  ( ( 5  x.  4 )  -  (
5  x.  3 ) )
7774, 76eqtr4i 2647 . . . . . . . . 9  |-  5  =  ( ( 5  x.  4 )  - ; 1 5 )
7877a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  5  =  ( ( 5  x.  4 )  - ; 1 5 ) )
7963, 78oveq12d 6668 . . . . . . 7  |-  ( n  e.  NN  ->  (
( 4 ^ (
n  +  1 ) )  +  5 )  =  ( ( ( 4 ^ n )  x.  4 )  +  ( ( 5  x.  4 )  - ; 1 5 ) ) )
8053, 55mulcld 10060 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( 4 ^ n
)  x.  4 )  e.  CC )
8154, 55mulcld 10060 . . . . . . . 8  |-  ( n  e.  NN  ->  (
5  x.  4 )  e.  CC )
82 5nn0 11312 . . . . . . . . . . 11  |-  5  e.  NN0
8315, 82deccl 11512 . . . . . . . . . 10  |- ; 1 5  e.  NN0
8483nn0cni 11304 . . . . . . . . 9  |- ; 1 5  e.  CC
8584a1i 11 . . . . . . . 8  |-  ( n  e.  NN  -> ; 1 5  e.  CC )
8680, 81, 85addsubassd 10412 . . . . . . 7  |-  ( n  e.  NN  ->  (
( ( ( 4 ^ n )  x.  4 )  +  ( 5  x.  4 ) )  - ; 1 5 )  =  ( ( ( 4 ^ n )  x.  4 )  +  ( ( 5  x.  4 )  - ; 1 5 ) ) )
8779, 86eqtr4d 2659 . . . . . 6  |-  ( n  e.  NN  ->  (
( 4 ^ (
n  +  1 ) )  +  5 )  =  ( ( ( ( 4 ^ n
)  x.  4 )  +  ( 5  x.  4 ) )  - ; 1 5 ) )
8857, 62, 873eqtr4rd 2667 . . . . 5  |-  ( n  e.  NN  ->  (
( 4 ^ (
n  +  1 ) )  +  5 )  =  ( ( ( ( 4 ^ n
)  +  5 )  x.  4 )  -  ( 3  x.  5 ) ) )
8988adantr 481 . . . 4  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
( ( 4 ^ ( n  +  1 ) )  +  5 )  =  ( ( ( ( 4 ^ n )  +  5 )  x.  4 )  -  ( 3  x.  5 ) ) )
9052, 89breqtrrd 4681 . . 3  |-  ( ( n  e.  NN  /\  3  ||  ( ( 4 ^ n )  +  5 ) )  -> 
3  ||  ( (
4 ^ ( n  +  1 ) )  +  5 ) )
9190ex 450 . 2  |-  ( n  e.  NN  ->  (
3  ||  ( (
4 ^ n )  +  5 )  -> 
3  ||  ( (
4 ^ ( n  +  1 ) )  +  5 ) ) )
923, 6, 9, 12, 34, 91nnind 11038 1  |-  ( N  e.  NN  ->  3  ||  ( ( 4 ^ N )  +  5 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   3c3 11071   4c4 11072   5c5 11073   9c9 11077   NN0cn0 11292   ZZcz 11377  ;cdc 11493   ^cexp 12860    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-seq 12802  df-exp 12861  df-dvds 14984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator