| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipasslem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for ipassi 27696. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 |
|
| ip1i.2 |
|
| ip1i.4 |
|
| ip1i.7 |
|
| ip1i.9 |
|
| ipasslem1.b |
|
| Ref | Expression |
|---|---|
| ipasslem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn 11302 |
. . . . . . . . . . 11
| |
| 2 | ax-1cn 9994 |
. . . . . . . . . . . 12
| |
| 3 | ip1i.9 |
. . . . . . . . . . . . . 14
| |
| 4 | 3 | phnvi 27671 |
. . . . . . . . . . . . 13
|
| 5 | ip1i.1 |
. . . . . . . . . . . . . 14
| |
| 6 | ip1i.2 |
. . . . . . . . . . . . . 14
| |
| 7 | ip1i.4 |
. . . . . . . . . . . . . 14
| |
| 8 | 5, 6, 7 | nvdir 27486 |
. . . . . . . . . . . . 13
|
| 9 | 4, 8 | mpan 706 |
. . . . . . . . . . . 12
|
| 10 | 2, 9 | mp3an2 1412 |
. . . . . . . . . . 11
|
| 11 | 1, 10 | sylan 488 |
. . . . . . . . . 10
|
| 12 | 5, 7 | nvsid 27482 |
. . . . . . . . . . . . 13
|
| 13 | 4, 12 | mpan 706 |
. . . . . . . . . . . 12
|
| 14 | 13 | adantl 482 |
. . . . . . . . . . 11
|
| 15 | 14 | oveq2d 6666 |
. . . . . . . . . 10
|
| 16 | 11, 15 | eqtrd 2656 |
. . . . . . . . 9
|
| 17 | 16 | oveq1d 6665 |
. . . . . . . 8
|
| 18 | ipasslem1.b |
. . . . . . . . . . . . 13
| |
| 19 | ip1i.7 |
. . . . . . . . . . . . . 14
| |
| 20 | 5, 19 | dipcl 27567 |
. . . . . . . . . . . . 13
|
| 21 | 4, 18, 20 | mp3an13 1415 |
. . . . . . . . . . . 12
|
| 22 | 21 | mulid2d 10058 |
. . . . . . . . . . 11
|
| 23 | 22 | adantl 482 |
. . . . . . . . . 10
|
| 24 | 23 | oveq2d 6666 |
. . . . . . . . 9
|
| 25 | 5, 7 | nvscl 27481 |
. . . . . . . . . . . 12
|
| 26 | 4, 25 | mp3an1 1411 |
. . . . . . . . . . 11
|
| 27 | 1, 26 | sylan 488 |
. . . . . . . . . 10
|
| 28 | 5, 6, 7, 19, 3 | ipdiri 27685 |
. . . . . . . . . . 11
|
| 29 | 18, 28 | mp3an3 1413 |
. . . . . . . . . 10
|
| 30 | 27, 29 | sylancom 701 |
. . . . . . . . 9
|
| 31 | 24, 30 | eqtr4d 2659 |
. . . . . . . 8
|
| 32 | 17, 31 | eqtr4d 2659 |
. . . . . . 7
|
| 33 | oveq1 6657 |
. . . . . . 7
| |
| 34 | 32, 33 | sylan9eq 2676 |
. . . . . 6
|
| 35 | adddir 10031 |
. . . . . . . . 9
| |
| 36 | 2, 35 | mp3an2 1412 |
. . . . . . . 8
|
| 37 | 1, 21, 36 | syl2an 494 |
. . . . . . 7
|
| 38 | 37 | adantr 481 |
. . . . . 6
|
| 39 | 34, 38 | eqtr4d 2659 |
. . . . 5
|
| 40 | 39 | exp31 630 |
. . . 4
|
| 41 | 40 | a2d 29 |
. . 3
|
| 42 | eqid 2622 |
. . . . . 6
| |
| 43 | 5, 42, 19 | dip0l 27573 |
. . . . 5
|
| 44 | 4, 18, 43 | mp2an 708 |
. . . 4
|
| 45 | 5, 7, 42 | nv0 27492 |
. . . . . 6
|
| 46 | 4, 45 | mpan 706 |
. . . . 5
|
| 47 | 46 | oveq1d 6665 |
. . . 4
|
| 48 | 21 | mul02d 10234 |
. . . 4
|
| 49 | 44, 47, 48 | 3eqtr4a 2682 |
. . 3
|
| 50 | oveq1 6657 |
. . . . . 6
| |
| 51 | 50 | oveq1d 6665 |
. . . . 5
|
| 52 | oveq1 6657 |
. . . . 5
| |
| 53 | 51, 52 | eqeq12d 2637 |
. . . 4
|
| 54 | 53 | imbi2d 330 |
. . 3
|
| 55 | oveq1 6657 |
. . . . . 6
| |
| 56 | 55 | oveq1d 6665 |
. . . . 5
|
| 57 | oveq1 6657 |
. . . . 5
| |
| 58 | 56, 57 | eqeq12d 2637 |
. . . 4
|
| 59 | 58 | imbi2d 330 |
. . 3
|
| 60 | oveq1 6657 |
. . . . . 6
| |
| 61 | 60 | oveq1d 6665 |
. . . . 5
|
| 62 | oveq1 6657 |
. . . . 5
| |
| 63 | 61, 62 | eqeq12d 2637 |
. . . 4
|
| 64 | 63 | imbi2d 330 |
. . 3
|
| 65 | oveq1 6657 |
. . . . . 6
| |
| 66 | 65 | oveq1d 6665 |
. . . . 5
|
| 67 | oveq1 6657 |
. . . . 5
| |
| 68 | 66, 67 | eqeq12d 2637 |
. . . 4
|
| 69 | 68 | imbi2d 330 |
. . 3
|
| 70 | 41, 49, 54, 59, 64, 69 | nn0indALT 11473 |
. 2
|
| 71 | 70 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-grpo 27347 df-gid 27348 df-ginv 27349 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 df-dip 27556 df-ph 27668 |
| This theorem is referenced by: ipasslem2 27687 ipasslem3 27688 ipasslem4 27689 |
| Copyright terms: Public domain | W3C validator |