MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdiri Structured version   Visualization version   Unicode version

Theorem ipdiri 27685
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .sOLD `  U )
ip1i.7  |-  P  =  ( .iOLD `  U )
ip1i.9  |-  U  e.  CPreHil
OLD
Assertion
Ref Expression
ipdiri  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( ( A G B ) P C )  =  ( ( A P C )  +  ( B P C ) ) )

Proof of Theorem ipdiri
StepHypRef Expression
1 oveq1 6657 . . . 4  |-  ( A  =  if ( A  e.  X ,  A ,  ( 0vec `  U
) )  ->  ( A G B )  =  ( if ( A  e.  X ,  A ,  ( 0vec `  U
) ) G B ) )
21oveq1d 6665 . . 3  |-  ( A  =  if ( A  e.  X ,  A ,  ( 0vec `  U
) )  ->  (
( A G B ) P C )  =  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G B ) P C ) )
3 oveq1 6657 . . . 4  |-  ( A  =  if ( A  e.  X ,  A ,  ( 0vec `  U
) )  ->  ( A P C )  =  ( if ( A  e.  X ,  A ,  ( 0vec `  U
) ) P C ) )
43oveq1d 6665 . . 3  |-  ( A  =  if ( A  e.  X ,  A ,  ( 0vec `  U
) )  ->  (
( A P C )  +  ( B P C ) )  =  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) P C )  +  ( B P C ) ) )
52, 4eqeq12d 2637 . 2  |-  ( A  =  if ( A  e.  X ,  A ,  ( 0vec `  U
) )  ->  (
( ( A G B ) P C )  =  ( ( A P C )  +  ( B P C ) )  <->  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G B ) P C )  =  ( ( if ( A  e.  X ,  A , 
( 0vec `  U )
) P C )  +  ( B P C ) ) ) )
6 oveq2 6658 . . . 4  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G B )  =  ( if ( A  e.  X ,  A , 
( 0vec `  U )
) G if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) )
76oveq1d 6665 . . 3  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( if ( A  e.  X ,  A ,  ( 0vec `  U
) ) G B ) P C )  =  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C ) )
8 oveq1 6657 . . . 4  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  ( B P C )  =  ( if ( B  e.  X ,  B ,  ( 0vec `  U
) ) P C ) )
98oveq2d 6666 . . 3  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( if ( A  e.  X ,  A ,  ( 0vec `  U
) ) P C )  +  ( B P C ) )  =  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) P C )  +  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P C ) ) )
107, 9eqeq12d 2637 . 2  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G B ) P C )  =  ( ( if ( A  e.  X ,  A , 
( 0vec `  U )
) P C )  +  ( B P C ) )  <->  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C )  =  ( ( if ( A  e.  X ,  A , 
( 0vec `  U )
) P C )  +  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) ) )
11 oveq2 6658 . . 3  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( if ( A  e.  X ,  A ,  ( 0vec `  U
) ) G if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) P C )  =  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) )
12 oveq2 6658 . . . 4  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) P C )  =  ( if ( A  e.  X ,  A , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) )
13 oveq2 6658 . . . 4  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C )  =  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) )
1412, 13oveq12d 6668 . . 3  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( if ( A  e.  X ,  A ,  ( 0vec `  U
) ) P C )  +  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) )  =  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) )  +  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) ) )
1511, 14eqeq12d 2637 . 2  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C )  =  ( ( if ( A  e.  X ,  A , 
( 0vec `  U )
) P C )  +  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) )  <->  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) G if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) )  =  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) )  +  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) ) ) )
16 ip1i.1 . . 3  |-  X  =  ( BaseSet `  U )
17 ip1i.2 . . 3  |-  G  =  ( +v `  U
)
18 ip1i.4 . . 3  |-  S  =  ( .sOLD `  U )
19 ip1i.7 . . 3  |-  P  =  ( .iOLD `  U )
20 ip1i.9 . . 3  |-  U  e.  CPreHil
OLD
21 eqid 2622 . . . 4  |-  ( 0vec `  U )  =  (
0vec `  U )
2216, 21, 20elimph 27675 . . 3  |-  if ( A  e.  X ,  A ,  ( 0vec `  U ) )  e.  X
2316, 21, 20elimph 27675 . . 3  |-  if ( B  e.  X ,  B ,  ( 0vec `  U ) )  e.  X
2416, 21, 20elimph 27675 . . 3  |-  if ( C  e.  X ,  C ,  ( 0vec `  U ) )  e.  X
2516, 17, 18, 19, 20, 22, 23, 24ipdirilem 27684 . 2  |-  ( ( if ( A  e.  X ,  A , 
( 0vec `  U )
) G if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) P if ( C  e.  X ,  C ,  ( 0vec `  U
) ) )  =  ( ( if ( A  e.  X ,  A ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) )  +  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) )
265, 10, 15, 25dedth3h 4141 1  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( ( A G B ) P C )  =  ( ( A P C )  +  ( B P C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   ifcif 4086   ` cfv 5888  (class class class)co 6650    + caddc 9939   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   0veccn0v 27443   .iOLDcdip 27555   CPreHil OLDccphlo 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-dip 27556  df-ph 27668
This theorem is referenced by:  ipasslem1  27686  ipasslem2  27687  ipasslem11  27695  dipdir  27697
  Copyright terms: Public domain W3C validator