Proof of Theorem baerlem5alem1
| Step | Hyp | Ref
| Expression |
| 1 | | baerlem5a.j1 |
. . 3
           |
| 2 | | baerlem3.v |
. . . . . 6
     |
| 3 | | baerlem3.t |
. . . . . 6
     |
| 4 | | baerlem3.r |
. . . . . 6
Scalar   |
| 5 | | baerlem3.b |
. . . . . 6
     |
| 6 | | baerlem3.m |
. . . . . 6
     |
| 7 | | baerlem3.w |
. . . . . . 7
   |
| 8 | | lveclmod 19106 |
. . . . . . 7

  |
| 9 | 7, 8 | syl 17 |
. . . . . 6
   |
| 10 | | baerlem5a.a1 |
. . . . . 6
   |
| 11 | | baerlem3.x |
. . . . . 6
   |
| 12 | | baerlem3.y |
. . . . . . 7
     |
| 13 | 12 | eldifad 3586 |
. . . . . 6
   |
| 14 | 2, 3, 4, 5, 6, 9, 10, 11, 13 | lmodsubdi 18920 |
. . . . 5
             |
| 15 | | baerlem3.p |
. . . . . 6
    |
| 16 | | baerlem3.i |
. . . . . 6
      |
| 17 | 2, 4, 3, 5 | lmodvscl 18880 |
. . . . . . 7
 
 
   |
| 18 | 9, 10, 11, 17 | syl3anc 1326 |
. . . . . 6
     |
| 19 | 2, 15, 6, 3, 4, 5, 16, 9, 10, 18, 13 | lmodsubvs 18919 |
. . . . 5
    
              |
| 20 | 14, 19 | eqtrd 2656 |
. . . 4
                 |
| 21 | 20 | oveq1d 6665 |
. . 3
   
                     |
| 22 | 4 | lmodring 18871 |
. . . . . . 7

  |
| 23 | | ringgrp 18552 |
. . . . . . 7

  |
| 24 | 9, 22, 23 | 3syl 18 |
. . . . . 6
   |
| 25 | 5, 16 | grpinvcl 17467 |
. . . . . 6
 
       |
| 26 | 24, 10, 25 | syl2anc 693 |
. . . . 5
       |
| 27 | 2, 4, 3, 5 | lmodvscl 18880 |
. . . . 5
     
     
   |
| 28 | 9, 26, 13, 27 | syl3anc 1326 |
. . . 4
         |
| 29 | | baerlem5a.b1 |
. . . . 5
   |
| 30 | | baerlem3.z |
. . . . . 6
     |
| 31 | 30 | eldifad 3586 |
. . . . 5
   |
| 32 | 2, 4, 3, 5 | lmodvscl 18880 |
. . . . 5
 
 
   |
| 33 | 9, 29, 31, 32 | syl3anc 1326 |
. . . 4
     |
| 34 | 2, 15 | lmodass 18878 |
. . . 4
              
   
            
     
       |
| 35 | 9, 18, 28, 33, 34 | syl13anc 1328 |
. . 3
            
                  |
| 36 | 1, 21, 35 | 3eqtrd 2660 |
. 2
                 |
| 37 | 2, 15 | lmodvacl 18877 |
. . . . . 6
 
     |
| 38 | 9, 13, 31, 37 | syl3anc 1326 |
. . . . 5
     |
| 39 | 2, 4, 3, 5 | lmodvscl 18880 |
. . . . 5
 
   
     |
| 40 | 9, 10, 38, 39 | syl3anc 1326 |
. . . 4
       |
| 41 | | eqid 2622 |
. . . . 5
           |
| 42 | 2, 15, 41, 6 | grpsubval 17465 |
. . . 4
            
               
       |
| 43 | 18, 40, 42 | syl2anc 693 |
. . 3
    
               
       |
| 44 | 2, 3, 4, 5, 6, 9, 10, 11, 38 | lmodsubdi 18920 |
. . 3
                 |
| 45 | 2, 15, 4, 3, 5 | lmodvsdi 18886 |
. . . . . 6
      
 
              
         |
| 46 | 9, 26, 13, 31, 45 | syl13anc 1328 |
. . . . 5
                         |
| 47 | 2, 4, 3, 41, 5, 16, 9, 38, 10 | lmodvsneg 18907 |
. . . . 5
         
         
    |
| 48 | | baerlem3.o |
. . . . . . . . . 10
     |
| 49 | | baerlem3.n |
. . . . . . . . . 10
     |
| 50 | | baerlem5a.e1 |
. . . . . . . . . 10
   |
| 51 | | baerlem5a.d1 |
. . . . . . . . . . 11
   |
| 52 | 5, 16 | grpinvcl 17467 |
. . . . . . . . . . 11
 
       |
| 53 | 24, 51, 52 | syl2anc 693 |
. . . . . . . . . 10
       |
| 54 | | baerlem3.d |
. . . . . . . . . 10
               |
| 55 | | eqid 2622 |
. . . . . . . . . . . 12
         |
| 56 | 2, 55, 49, 9, 13, 31 | lspprcl 18978 |
. . . . . . . . . . . 12
     
        |
| 57 | | baerlem3.c |
. . . . . . . . . . . 12
          |
| 58 | 2, 15, 3, 4, 5, 49,
9, 26, 29, 13, 31 | lsppreli 19090 |
. . . . . . . . . . . 12
        
           |
| 59 | 2, 15, 3, 4, 5, 49,
9, 50, 53, 13, 31 | lsppreli 19090 |
. . . . . . . . . . . 12
        
           |
| 60 | | baerlem5a.j2 |
. . . . . . . . . . . . 13
           |
| 61 | 2, 3, 4, 5, 6, 9, 51, 11, 31 | lmodsubdi 18920 |
. . . . . . . . . . . . . . . 16
             |
| 62 | 2, 4, 3, 5 | lmodvscl 18880 |
. . . . . . . . . . . . . . . . . 18
 
 
   |
| 63 | 9, 51, 11, 62 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
     |
| 64 | 2, 15, 6, 3, 4, 5, 16, 9, 51, 63, 31 | lmodsubvs 18919 |
. . . . . . . . . . . . . . . 16
    
              |
| 65 | 61, 64 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
                 |
| 66 | 65 | oveq1d 6665 |
. . . . . . . . . . . . . 14
   
                     |
| 67 | | lmodabl 18910 |
. . . . . . . . . . . . . . . 16

  |
| 68 | 7, 8, 67 | 3syl 18 |
. . . . . . . . . . . . . . 15
   |
| 69 | 2, 4, 3, 5 | lmodvscl 18880 |
. . . . . . . . . . . . . . . 16
     
     
   |
| 70 | 9, 53, 31, 69 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
         |
| 71 | 2, 4, 3, 5 | lmodvscl 18880 |
. . . . . . . . . . . . . . . 16
 
 
   |
| 72 | 9, 50, 13, 71 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
     |
| 73 | 2, 15, 68, 63, 70, 72 | abl32 18214 |
. . . . . . . . . . . . . 14
            
     
            |
| 74 | 2, 15 | lmodass 18878 |
. . . . . . . . . . . . . . 15
              
   
            
 
           |
| 75 | 9, 63, 72, 70, 74 | syl13anc 1328 |
. . . . . . . . . . . . . 14
            
                  |
| 76 | 66, 73, 75 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
   
               
     |
| 77 | 60, 36, 76 | 3eqtr3d 2664 |
. . . . . . . . . . . 12
          
              
     |
| 78 | 2, 15, 4, 5, 3, 55,
7, 56, 11, 57, 58, 59, 10, 51, 77 | lvecindp 19138 |
. . . . . . . . . . 11
              
          |
| 79 | 78 | simprd 479 |
. . . . . . . . . 10
        
              |
| 80 | 2, 15, 4, 5, 3, 48,
49, 7, 12, 30, 26, 29, 50, 53, 54, 79 | lvecindp2 19139 |
. . . . . . . . 9
             |
| 81 | 80 | simprd 479 |
. . . . . . . 8
       |
| 82 | 78 | simpld 475 |
. . . . . . . . 9
   |
| 83 | 82 | fveq2d 6195 |
. . . . . . . 8
           |
| 84 | 81, 83 | eqtr4d 2659 |
. . . . . . 7
       |
| 85 | 84 | oveq1d 6665 |
. . . . . 6
           |
| 86 | 85 | oveq2d 6666 |
. . . . 5
        
       
          |
| 87 | 46, 47, 86 | 3eqtr4rd 2667 |
. . . 4
        
                 |
| 88 | 87 | oveq2d 6666 |
. . 3
          
               
       |
| 89 | 43, 44, 88 | 3eqtr4rd 2667 |
. 2
          
     
      |
| 90 | 36, 89 | eqtrd 2656 |
1
   
     |