Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq4lem Structured version   Visualization version   Unicode version

Theorem mapdheq4lem 37020
Description: Lemma for mapdheq4 37021. Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdhe4.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdhe.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdh.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
mapdh.eg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh.ee  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
mapdheq4lem  |-  ( ph  ->  ( M `  ( N `  { ( Y  .-  Z ) } ) )  =  ( J `  { ( G R E ) } ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    h, G, x   
h, E    h, Z, x
Allowed substitution hints:    ph( x)    C( x)    Q( h)    U( x)    E( x)    H( x, h)    I( x, h)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdheq4lem
StepHypRef Expression
1 mapdh.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdh.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdh.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2622 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
5 mapdh.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 3, 5dvhlmod 36399 . . . . 5  |-  ( ph  ->  U  e.  LMod )
7 mapdhe4.y . . . . . . 7  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
87eldifad 3586 . . . . . 6  |-  ( ph  ->  Y  e.  V )
9 mapdh.v . . . . . . 7  |-  V  =  ( Base `  U
)
10 mapdh.n . . . . . . 7  |-  N  =  ( LSpan `  U )
119, 4, 10lspsncl 18977 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
126, 8, 11syl2anc 693 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
13 mapdhe.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
1413eldifad 3586 . . . . . 6  |-  ( ph  ->  Z  e.  V )
159, 4, 10lspsncl 18977 . . . . . 6  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
166, 14, 15syl2anc 693 . . . . 5  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
17 eqid 2622 . . . . . 6  |-  ( LSSum `  U )  =  (
LSSum `  U )
184, 17lsmcl 19083 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { Y } )  e.  (
LSubSp `  U )  /\  ( N `  { Z } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { Y }
) ( LSSum `  U
) ( N `  { Z } ) )  e.  ( LSubSp `  U
) )
196, 12, 16, 18syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  e.  ( LSubSp `  U )
)
20 mapdhcl.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
2120eldifad 3586 . . . . . . 7  |-  ( ph  ->  X  e.  V )
22 mapdh.s . . . . . . . 8  |-  .-  =  ( -g `  U )
239, 22lmodvsubcl 18908 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
246, 21, 8, 23syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( X  .-  Y
)  e.  V )
259, 4, 10lspsncl 18977 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Y )  e.  V )  ->  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U ) )
266, 24, 25syl2anc 693 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Y
) } )  e.  ( LSubSp `  U )
)
279, 22lmodvsubcl 18908 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Z  e.  V )  ->  ( X  .-  Z )  e.  V )
286, 21, 14, 27syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( X  .-  Z
)  e.  V )
299, 4, 10lspsncl 18977 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Z )  e.  V )  ->  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U ) )
306, 28, 29syl2anc 693 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Z
) } )  e.  ( LSubSp `  U )
)
314, 17lsmcl 19083 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U )  /\  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U ) )  -> 
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  {
( X  .-  Z
) } ) )  e.  ( LSubSp `  U
) )
326, 26, 30, 31syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  {
( X  .-  Z
) } ) )  e.  ( LSubSp `  U
) )
331, 2, 3, 4, 5, 19, 32mapdin 36951 . . 3  |-  ( ph  ->  ( M `  (
( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  {
( X  .-  Z
) } ) ) ) )  =  ( ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  i^i  ( M `  (
( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { ( X  .-  Z ) } ) ) ) ) )
34 mapdh.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
35 eqid 2622 . . . . . 6  |-  ( LSSum `  C )  =  (
LSSum `  C )
361, 2, 3, 4, 17, 34, 35, 5, 12, 16mapdlsm 36953 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  =  ( ( M `  ( N `  { Y } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) ) )
37 mapdh.eg . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
38 mapdh.q . . . . . . . . 9  |-  Q  =  ( 0g `  C
)
39 mapdh.i . . . . . . . . 9  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
40 mapdhc.o . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
41 mapdh.d . . . . . . . . 9  |-  D  =  ( Base `  C
)
42 mapdh.r . . . . . . . . 9  |-  R  =  ( -g `  C
)
43 mapdh.j . . . . . . . . 9  |-  J  =  ( LSpan `  C )
44 mapdhc.f . . . . . . . . 9  |-  ( ph  ->  F  e.  D )
45 mapdh.mn . . . . . . . . 9  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
461, 3, 5dvhlvec 36398 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LVec )
47 mapdh.yz . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
48 mapdh.xn . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
499, 40, 10, 46, 8, 13, 21, 47, 48lspindp2 19135 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
5049simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
5138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 8, 50mapdhcl 37016 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
5237, 51eqeltrrd 2702 . . . . . . . . 9  |-  ( ph  ->  G  e.  D )
5338, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 7, 52, 50mapdheq 37017 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) ) )
5437, 53mpbid 222 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) )
5554simpld 475 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { G } ) )
56 mapdh.ee . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
579, 40, 10, 46, 7, 14, 21, 47, 48lspindp1 19133 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
5857simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
5938, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 14, 58mapdhcl 37016 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
6056, 59eqeltrrd 2702 . . . . . . . . 9  |-  ( ph  ->  E  e.  D )
6138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 13, 60, 58mapdheq 37017 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) ) )
6256, 61mpbid 222 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) )
6362simpld 475 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( J `  { E } ) )
6455, 63oveq12d 6668 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) )  =  ( ( J `  { G } ) (
LSSum `  C ) ( J `  { E } ) ) )
6536, 64eqtrd 2656 . . . 4  |-  ( ph  ->  ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  =  ( ( J `  { G } ) (
LSSum `  C ) ( J `  { E } ) ) )
661, 2, 3, 4, 17, 34, 35, 5, 26, 30mapdlsm 36953 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { ( X  .-  Z ) } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { ( X  .-  Z ) } ) ) ) )
6754simprd 479 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `  { ( F R G ) } ) )
6862simprd 479 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `  { ( F R E ) } ) )
6967, 68oveq12d 6668 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Y ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { ( X 
.-  Z ) } ) ) )  =  ( ( J `  { ( F R G ) } ) ( LSSum `  C )
( J `  {
( F R E ) } ) ) )
7066, 69eqtrd 2656 . . . 4  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { ( X  .-  Z ) } ) ) )  =  ( ( J `
 { ( F R G ) } ) ( LSSum `  C
) ( J `  { ( F R E ) } ) ) )
7165, 70ineq12d 3815 . . 3  |-  ( ph  ->  ( ( M `  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  {
( X  .-  Z
) } ) ) ) )  =  ( ( ( J `  { G } ) (
LSSum `  C ) ( J `  { E } ) )  i^i  ( ( J `  { ( F R G ) } ) ( LSSum `  C )
( J `  {
( F R E ) } ) ) ) )
7233, 71eqtrd 2656 . 2  |-  ( ph  ->  ( M `  (
( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  {
( X  .-  Z
) } ) ) ) )  =  ( ( ( J `  { G } ) (
LSSum `  C ) ( J `  { E } ) )  i^i  ( ( J `  { ( F R G ) } ) ( LSSum `  C )
( J `  {
( F R E ) } ) ) ) )
739, 22, 40, 17, 10, 46, 21, 48, 47, 7, 13baerlem3 37002 . . 3  |-  ( ph  ->  ( N `  {
( Y  .-  Z
) } )  =  ( ( ( N `
 { Y }
) ( LSSum `  U
) ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  Y ) } ) ( LSSum `  U
) ( N `  { ( X  .-  Z ) } ) ) ) )
7473fveq2d 6195 . 2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .-  Z ) } ) )  =  ( M `  ( ( ( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) )  i^i  (
( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { ( X  .-  Z ) } ) ) ) ) )
75 eqid 2622 . . 3  |-  ( 0g
`  C )  =  ( 0g `  C
)
761, 34, 5lcdlvec 36880 . . 3  |-  ( ph  ->  C  e.  LVec )
771, 2, 3, 9, 10, 34, 41, 43, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48mapdindp 36960 . . 3  |-  ( ph  ->  -.  F  e.  ( J `  { G ,  E } ) )
781, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 8, 14, 60, 63, 47mapdncol 36959 . . 3  |-  ( ph  ->  ( J `  { G } )  =/=  ( J `  { E } ) )
791, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 40, 75, 7mapdn0 36958 . . 3  |-  ( ph  ->  G  e.  ( D 
\  { ( 0g
`  C ) } ) )
801, 2, 3, 9, 10, 34, 41, 43, 5, 60, 63, 40, 75, 13mapdn0 36958 . . 3  |-  ( ph  ->  E  e.  ( D 
\  { ( 0g
`  C ) } ) )
8141, 42, 75, 35, 43, 76, 44, 77, 78, 79, 80baerlem3 37002 . 2  |-  ( ph  ->  ( J `  {
( G R E ) } )  =  ( ( ( J `
 { G }
) ( LSSum `  C
) ( J `  { E } ) )  i^i  ( ( J `
 { ( F R G ) } ) ( LSSum `  C
) ( J `  { ( F R E ) } ) ) ) )
8272, 74, 813eqtr4d 2666 1  |-  ( ph  ->  ( M `  ( N `  { ( Y  .-  Z ) } ) )  =  ( J `  { ( G R E ) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    i^i cin 3573   ifcif 4086   {csn 4177   {cpr 4179   <.cotp 4185    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   0gc0g 16100   -gcsg 17424   LSSumclsm 18049   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-lcdual 36876  df-mapd 36914
This theorem is referenced by:  mapdheq4  37021
  Copyright terms: Public domain W3C validator