| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odzdvds | Structured version Visualization version Unicode version | ||
| Description: The only powers of |
| Ref | Expression |
|---|---|
| odzdvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 11301 |
. . . . . . . . 9
| |
| 2 | 1 | adantl 482 |
. . . . . . . 8
|
| 3 | odzcl 15498 |
. . . . . . . . . 10
| |
| 4 | 3 | adantr 481 |
. . . . . . . . 9
|
| 5 | 4 | nnrpd 11870 |
. . . . . . . 8
|
| 6 | modlt 12679 |
. . . . . . . 8
| |
| 7 | 2, 5, 6 | syl2anc 693 |
. . . . . . 7
|
| 8 | nn0z 11400 |
. . . . . . . . . . 11
| |
| 9 | 8 | adantl 482 |
. . . . . . . . . 10
|
| 10 | 9, 4 | zmodcld 12691 |
. . . . . . . . 9
|
| 11 | 10 | nn0red 11352 |
. . . . . . . 8
|
| 12 | 4 | nnred 11035 |
. . . . . . . 8
|
| 13 | 11, 12 | ltnled 10184 |
. . . . . . 7
|
| 14 | 7, 13 | mpbid 222 |
. . . . . 6
|
| 15 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 16 | 15 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 17 | 16 | breq2d 4665 |
. . . . . . . . . 10
|
| 18 | 17 | elrab 3363 |
. . . . . . . . 9
|
| 19 | ssrab2 3687 |
. . . . . . . . . . 11
| |
| 20 | nnuz 11723 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | sseqtri 3637 |
. . . . . . . . . 10
|
| 22 | infssuzle 11771 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | mpan 706 |
. . . . . . . . 9
|
| 24 | 18, 23 | sylbir 225 |
. . . . . . . 8
|
| 25 | 24 | ancoms 469 |
. . . . . . 7
|
| 26 | odzval 15496 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 481 |
. . . . . . . 8
|
| 28 | 27 | breq1d 4663 |
. . . . . . 7
|
| 29 | 25, 28 | syl5ibr 236 |
. . . . . 6
|
| 30 | 14, 29 | mtod 189 |
. . . . 5
|
| 31 | imnan 438 |
. . . . 5
| |
| 32 | 30, 31 | sylibr 224 |
. . . 4
|
| 33 | elnn0 11294 |
. . . . . 6
| |
| 34 | 10, 33 | sylib 208 |
. . . . 5
|
| 35 | 34 | ord 392 |
. . . 4
|
| 36 | 32, 35 | syld 47 |
. . 3
|
| 37 | simpl1 1064 |
. . . . . . 7
| |
| 38 | 37 | nnzd 11481 |
. . . . . 6
|
| 39 | dvds0 14997 |
. . . . . 6
| |
| 40 | 38, 39 | syl 17 |
. . . . 5
|
| 41 | simpl2 1065 |
. . . . . . . . 9
| |
| 42 | 41 | zcnd 11483 |
. . . . . . . 8
|
| 43 | 42 | exp0d 13002 |
. . . . . . 7
|
| 44 | 43 | oveq1d 6665 |
. . . . . 6
|
| 45 | 1m1e0 11089 |
. . . . . 6
| |
| 46 | 44, 45 | syl6eq 2672 |
. . . . 5
|
| 47 | 40, 46 | breqtrrd 4681 |
. . . 4
|
| 48 | oveq2 6658 |
. . . . . 6
| |
| 49 | 48 | oveq1d 6665 |
. . . . 5
|
| 50 | 49 | breq2d 4665 |
. . . 4
|
| 51 | 47, 50 | syl5ibrcom 237 |
. . 3
|
| 52 | 36, 51 | impbid 202 |
. 2
|
| 53 | 4 | nnnn0d 11351 |
. . . . . . . . 9
|
| 54 | 2, 4 | nndivred 11069 |
. . . . . . . . . 10
|
| 55 | nn0ge0 11318 |
. . . . . . . . . . . 12
| |
| 56 | 55 | adantl 482 |
. . . . . . . . . . 11
|
| 57 | 4 | nngt0d 11064 |
. . . . . . . . . . . 12
|
| 58 | ge0div 10890 |
. . . . . . . . . . . 12
| |
| 59 | 2, 12, 57, 58 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 60 | 56, 59 | mpbid 222 |
. . . . . . . . . 10
|
| 61 | flge0nn0 12621 |
. . . . . . . . . 10
| |
| 62 | 54, 60, 61 | syl2anc 693 |
. . . . . . . . 9
|
| 63 | 53, 62 | nn0mulcld 11356 |
. . . . . . . 8
|
| 64 | zexpcl 12875 |
. . . . . . . 8
| |
| 65 | 41, 63, 64 | syl2anc 693 |
. . . . . . 7
|
| 66 | 65 | zred 11482 |
. . . . . 6
|
| 67 | 1red 10055 |
. . . . . 6
| |
| 68 | zexpcl 12875 |
. . . . . . 7
| |
| 69 | 41, 10, 68 | syl2anc 693 |
. . . . . 6
|
| 70 | 37 | nnrpd 11870 |
. . . . . 6
|
| 71 | 42, 62, 53 | expmuld 13011 |
. . . . . . . 8
|
| 72 | 71 | oveq1d 6665 |
. . . . . . 7
|
| 73 | zexpcl 12875 |
. . . . . . . . 9
| |
| 74 | 41, 53, 73 | syl2anc 693 |
. . . . . . . 8
|
| 75 | 1zzd 11408 |
. . . . . . . 8
| |
| 76 | odzid 15499 |
. . . . . . . . . 10
| |
| 77 | 76 | adantr 481 |
. . . . . . . . 9
|
| 78 | moddvds 14991 |
. . . . . . . . . 10
| |
| 79 | 37, 74, 75, 78 | syl3anc 1326 |
. . . . . . . . 9
|
| 80 | 77, 79 | mpbird 247 |
. . . . . . . 8
|
| 81 | modexp 12999 |
. . . . . . . 8
| |
| 82 | 74, 75, 62, 70, 80, 81 | syl221anc 1337 |
. . . . . . 7
|
| 83 | 54 | flcld 12599 |
. . . . . . . . 9
|
| 84 | 1exp 12889 |
. . . . . . . . 9
| |
| 85 | 83, 84 | syl 17 |
. . . . . . . 8
|
| 86 | 85 | oveq1d 6665 |
. . . . . . 7
|
| 87 | 72, 82, 86 | 3eqtrd 2660 |
. . . . . 6
|
| 88 | modmul1 12723 |
. . . . . 6
| |
| 89 | 66, 67, 69, 70, 87, 88 | syl221anc 1337 |
. . . . 5
|
| 90 | 42, 10, 63 | expaddd 13010 |
. . . . . . 7
|
| 91 | modval 12670 |
. . . . . . . . . . 11
| |
| 92 | 2, 5, 91 | syl2anc 693 |
. . . . . . . . . 10
|
| 93 | 92 | oveq2d 6666 |
. . . . . . . . 9
|
| 94 | 63 | nn0cnd 11353 |
. . . . . . . . . 10
|
| 95 | 2 | recnd 10068 |
. . . . . . . . . 10
|
| 96 | 94, 95 | pncan3d 10395 |
. . . . . . . . 9
|
| 97 | 93, 96 | eqtrd 2656 |
. . . . . . . 8
|
| 98 | 97 | oveq2d 6666 |
. . . . . . 7
|
| 99 | 90, 98 | eqtr3d 2658 |
. . . . . 6
|
| 100 | 99 | oveq1d 6665 |
. . . . 5
|
| 101 | 69 | zcnd 11483 |
. . . . . . 7
|
| 102 | 101 | mulid2d 10058 |
. . . . . 6
|
| 103 | 102 | oveq1d 6665 |
. . . . 5
|
| 104 | 89, 100, 103 | 3eqtr3d 2664 |
. . . 4
|
| 105 | 104 | eqeq1d 2624 |
. . 3
|
| 106 | zexpcl 12875 |
. . . . 5
| |
| 107 | 41, 106 | sylancom 701 |
. . . 4
|
| 108 | moddvds 14991 |
. . . 4
| |
| 109 | 37, 107, 75, 108 | syl3anc 1326 |
. . 3
|
| 110 | moddvds 14991 |
. . . 4
| |
| 111 | 37, 69, 75, 110 | syl3anc 1326 |
. . 3
|
| 112 | 105, 109, 111 | 3bitr3d 298 |
. 2
|
| 113 | dvdsval3 14987 |
. . 3
| |
| 114 | 4, 9, 113 | syl2anc 693 |
. 2
|
| 115 | 52, 112, 114 | 3bitr4d 300 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-odz 15470 df-phi 15471 |
| This theorem is referenced by: odzphi 15501 pockthlem 15609 odz2prm2pw 41475 fmtnoprmfac2 41479 |
| Copyright terms: Public domain | W3C validator |