MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfzo0difsn Structured version   Visualization version   Unicode version

Theorem modfzo0difsn 12742
Description: For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modfzo0difsn  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  ->  E. i  e.  (
1..^ N ) K  =  ( ( i  +  J )  mod 
N ) )
Distinct variable groups:    i, J    i, K    i, N

Proof of Theorem modfzo0difsn
StepHypRef Expression
1 eldifi 3732 . . . . . 6  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  K  e.  ( 0..^ N ) )
2 elfzoelz 12470 . . . . . . 7  |-  ( K  e.  ( 0..^ N )  ->  K  e.  ZZ )
32zred 11482 . . . . . 6  |-  ( K  e.  ( 0..^ N )  ->  K  e.  RR )
41, 3syl 17 . . . . 5  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  K  e.  RR )
5 elfzoelz 12470 . . . . . 6  |-  ( J  e.  ( 0..^ N )  ->  J  e.  ZZ )
65zred 11482 . . . . 5  |-  ( J  e.  ( 0..^ N )  ->  J  e.  RR )
7 leloe 10124 . . . . 5  |-  ( ( K  e.  RR  /\  J  e.  RR )  ->  ( K  <_  J  <->  ( K  <  J  \/  K  =  J )
) )
84, 6, 7syl2anr 495 . . . 4  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  <_  J  <->  ( K  <  J  \/  K  =  J )
) )
9 elfzo0 12508 . . . . . . . . . . . 12  |-  ( K  e.  ( 0..^ N )  <->  ( K  e. 
NN0  /\  N  e.  NN  /\  K  <  N
) )
10 elfzo0 12508 . . . . . . . . . . . . . . 15  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
11 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( K  e.  NN0  ->  K  e.  CC )
1211adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  NN0  /\  K  <  N )  ->  K  e.  CC )
1312adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  K  e.  CC )
14 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  e.  NN0  ->  J  e.  CC )
15143ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  CC )
1615adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  J  e.  CC )
17 nncn 11028 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  ->  N  e.  CC )
18173ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  CC )
1918adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  N  e.  CC )
2013, 16, 19subadd23d 10414 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( ( K  -  J )  +  N )  =  ( K  +  ( N  -  J ) ) )
21 simpl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  NN0  /\  K  <  N )  ->  K  e.  NN0 )
22 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  e.  NN0  ->  J  e.  ZZ )
23 nnz 11399 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  ->  N  e.  ZZ )
24 znnsub 11423 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  ZZ  /\  N  e.  ZZ )  ->  ( J  <  N  <->  ( N  -  J )  e.  NN ) )
2522, 23, 24syl2an 494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( J  <  N  <->  ( N  -  J )  e.  NN ) )
2625biimp3a 1432 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( N  -  J )  e.  NN )
27 nn0nnaddcl 11324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  NN0  /\  ( N  -  J
)  e.  NN )  ->  ( K  +  ( N  -  J
) )  e.  NN )
2821, 26, 27syl2anr 495 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( K  +  ( N  -  J ) )  e.  NN )
2920, 28eqeltrd 2701 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( ( K  -  J )  +  N )  e.  NN )
3029adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  +  N
)  e.  NN )
31 simp2 1062 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  NN )
3231adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  N  e.  NN )
3332adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  ->  N  e.  NN )
34 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( K  e.  NN0  ->  K  e.  RR )
3534adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  NN0  /\  K  <  N )  ->  K  e.  RR )
3635adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  K  e.  RR )
37 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  e.  NN0  ->  J  e.  RR )
38373ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  RR )
3938adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  J  e.  RR )
4036, 39sublt0d 10653 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( ( K  -  J )  <  0  <->  K  <  J ) )
4140bicomd 213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( K  <  J  <->  ( K  -  J )  <  0
) )
4241biimpa 501 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( K  -  J
)  <  0 )
43 resubcl 10345 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  RR  /\  J  e.  RR )  ->  ( K  -  J
)  e.  RR )
4435, 38, 43syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( K  -  J )  e.  RR )
45 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  N  e.  RR )
46453ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  RR )
4746adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  N  e.  RR )
4844, 47jca 554 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( ( K  -  J )  e.  RR  /\  N  e.  RR ) )
4948adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  e.  RR  /\  N  e.  RR ) )
50 ltaddnegr 10252 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  -  J
)  e.  RR  /\  N  e.  RR )  ->  ( ( K  -  J )  <  0  <->  ( ( K  -  J
)  +  N )  <  N ) )
5149, 50syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  <  0  <->  ( ( K  -  J
)  +  N )  <  N ) )
5242, 51mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  +  N
)  <  N )
53 elfzo1 12517 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  -  J
)  +  N )  e.  ( 1..^ N )  <->  ( ( ( K  -  J )  +  N )  e.  NN  /\  N  e.  NN  /\  ( ( K  -  J )  +  N )  < 
N ) )
5430, 33, 52, 53syl3anbrc 1246 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  +  N
)  e.  ( 1..^ N ) )
5554exp31 630 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  (
( K  e.  NN0  /\  K  <  N )  ->  ( K  < 
J  ->  ( ( K  -  J )  +  N )  e.  ( 1..^ N ) ) ) )
5610, 55sylbi 207 . . . . . . . . . . . . . 14  |-  ( J  e.  ( 0..^ N )  ->  ( ( K  e.  NN0  /\  K  <  N )  ->  ( K  <  J  ->  (
( K  -  J
)  +  N )  e.  ( 1..^ N ) ) ) )
5756com12 32 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  K  <  N )  -> 
( J  e.  ( 0..^ N )  -> 
( K  <  J  ->  ( ( K  -  J )  +  N
)  e.  ( 1..^ N ) ) ) )
58573adant2 1080 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( J  e.  ( 0..^ N )  ->  ( K  <  J  ->  (
( K  -  J
)  +  N )  e.  ( 1..^ N ) ) ) )
599, 58sylbi 207 . . . . . . . . . . 11  |-  ( K  e.  ( 0..^ N )  ->  ( J  e.  ( 0..^ N )  ->  ( K  < 
J  ->  ( ( K  -  J )  +  N )  e.  ( 1..^ N ) ) ) )
601, 59syl 17 . . . . . . . . . 10  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( J  e.  ( 0..^ N )  ->  ( K  <  J  ->  (
( K  -  J
)  +  N )  e.  ( 1..^ N ) ) ) )
6160impcom 446 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  <  J  ->  ( ( K  -  J )  +  N
)  e.  ( 1..^ N ) ) )
6261impcom 446 . . . . . . . 8  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( ( K  -  J )  +  N )  e.  ( 1..^ N ) )
63 oveq1 6657 . . . . . . . . . . 11  |-  ( i  =  ( ( K  -  J )  +  N )  ->  (
i  +  J )  =  ( ( ( K  -  J )  +  N )  +  J ) )
642zcnd 11483 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ( 0..^ N )  ->  K  e.  CC )
6564adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  ( 0..^ N )  /\  ( J  e.  NN0  /\  N  e.  NN ) )  ->  K  e.  CC )
6614adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  J  e.  CC )
6766adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  ( 0..^ N )  /\  ( J  e.  NN0  /\  N  e.  NN ) )  ->  J  e.  CC )
6817adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  N  e.  CC )
6968adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  ( 0..^ N )  /\  ( J  e.  NN0  /\  N  e.  NN ) )  ->  N  e.  CC )
7065, 67, 693jca 1242 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  ( 0..^ N )  /\  ( J  e.  NN0  /\  N  e.  NN ) )  -> 
( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC )
)
7170ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 0..^ N )  ->  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) ) )
721, 71syl 17 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  (
( J  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) ) )
7372com12 32 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  ( ( 0..^ N ) 
\  { J }
)  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) ) )
74733adant3 1081 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( K  e.  ( (
0..^ N )  \  { J } )  -> 
( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC )
) )
7510, 74sylbi 207 . . . . . . . . . . . . . 14  |-  ( J  e.  ( 0..^ N )  ->  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) ) )
7675imp 445 . . . . . . . . . . . . 13  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC )
)
7776adantl 482 . . . . . . . . . . . 12  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) )
78 nppcan 10303 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC )  ->  (
( ( K  -  J )  +  N
)  +  J )  =  ( K  +  N ) )
7977, 78syl 17 . . . . . . . . . . 11  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( (
( K  -  J
)  +  N )  +  J )  =  ( K  +  N
) )
8063, 79sylan9eqr 2678 . . . . . . . . . 10  |-  ( ( ( K  <  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  /\  i  =  ( ( K  -  J )  +  N
) )  ->  (
i  +  J )  =  ( K  +  N ) )
8180oveq1d 6665 . . . . . . . . 9  |-  ( ( ( K  <  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  /\  i  =  ( ( K  -  J )  +  N
) )  ->  (
( i  +  J
)  mod  N )  =  ( ( K  +  N )  mod 
N ) )
8281eqeq2d 2632 . . . . . . . 8  |-  ( ( ( K  <  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  /\  i  =  ( ( K  -  J )  +  N
) )  ->  ( K  =  ( (
i  +  J )  mod  N )  <->  K  =  ( ( K  +  N )  mod  N
) ) )
839biimpi 206 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0..^ N )  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) )
8483a1d 25 . . . . . . . . . . . 12  |-  ( K  e.  ( 0..^ N )  ->  ( J  e.  ( 0..^ N )  ->  ( K  e. 
NN0  /\  N  e.  NN  /\  K  <  N
) ) )
851, 84syl 17 . . . . . . . . . . 11  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( J  e.  ( 0..^ N )  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) ) )
8685impcom 446 . . . . . . . . . 10  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  e.  NN0  /\  N  e.  NN  /\  K  <  N ) )
8786adantl 482 . . . . . . . . 9  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) )
88 addmodidr 12719 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( K  +  N
)  mod  N )  =  K )
8988eqcomd 2628 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  K  =  ( ( K  +  N )  mod 
N ) )
9087, 89syl 17 . . . . . . . 8  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  K  =  ( ( K  +  N )  mod  N
) )
9162, 82, 90rspcedvd 3317 . . . . . . 7  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
9291ex 450 . . . . . 6  |-  ( K  <  J  ->  (
( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
93 eldifsn 4317 . . . . . . . . 9  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  <->  ( K  e.  ( 0..^ N )  /\  K  =/=  J
) )
94 eqneqall 2805 . . . . . . . . . . 11  |-  ( K  =  J  ->  ( K  =/=  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) ) )
9594com12 32 . . . . . . . . . 10  |-  ( K  =/=  J  ->  ( K  =  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N
) ) )
9695adantl 482 . . . . . . . . 9  |-  ( ( K  e.  ( 0..^ N )  /\  K  =/=  J )  ->  ( K  =  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N
) ) )
9793, 96sylbi 207 . . . . . . . 8  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( K  =  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N
) ) )
9897adantl 482 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  =  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
9998com12 32 . . . . . 6  |-  ( K  =  J  ->  (
( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
10092, 99jaoi 394 . . . . 5  |-  ( ( K  <  J  \/  K  =  J )  ->  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N ) 
\  { J }
) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) ) )
101100com12 32 . . . 4  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( ( K  < 
J  \/  K  =  J )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) ) )
1028, 101sylbid 230 . . 3  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  <_  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
103102com12 32 . 2  |-  ( K  <_  J  ->  (
( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
104 ltnle 10117 . . . . . . . . 9  |-  ( ( J  e.  RR  /\  K  e.  RR )  ->  ( J  <  K  <->  -.  K  <_  J )
)
1056, 4, 104syl2an 494 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( J  <  K  <->  -.  K  <_  J )
)
106105bicomd 213 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( -.  K  <_  J 
<->  J  <  K ) )
107223ad2ant1 1082 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  ZZ )
108 nn0z 11400 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  NN0  ->  K  e.  ZZ )
109108adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  NN0  /\  K  <  N )  ->  K  e.  ZZ )
110 znnsub 11423 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  <  K  <->  ( K  -  J )  e.  NN ) )
111107, 109, 110syl2anr 495 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  K  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  ( J  <  K  <->  ( K  -  J )  e.  NN ) )
112111biimpa 501 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. 
NN0  /\  K  <  N )  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )  /\  J  <  K )  -> 
( K  -  J
)  e.  NN )
11331adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  K  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  N  e.  NN )
114113adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. 
NN0  /\  K  <  N )  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )  /\  J  <  K )  ->  N  e.  NN )
115 nn0ge0 11318 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  e.  NN0  ->  0  <_  J )
1161153ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  0  <_  J )
117116adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  0  <_  J
)
118 subge02 10544 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  RR  /\  J  e.  RR )  ->  ( 0  <_  J  <->  ( K  -  J )  <_  K ) )
11934, 38, 118syl2an 494 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( 0  <_  J 
<->  ( K  -  J
)  <_  K )
)
120117, 119mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( K  -  J )  <_  K
)
12138adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  J  e.  RR )
12234adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  K  e.  RR )
12346adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  N  e.  RR )
124121, 122, 1233jca 1242 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
12543ancoms 469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  RR  /\  K  e.  RR )  ->  ( K  -  J
)  e.  RR )
1261253adant3 1081 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  ( K  -  J )  e.  RR )
127 simp2 1062 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  K  e.  RR )
128 simp3 1063 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  N  e.  RR )
129126, 127, 1283jca 1242 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( K  -  J
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
130124, 129syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( ( K  -  J )  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
131 lelttr 10128 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  -  J
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( ( K  -  J )  <_  K  /\  K  <  N )  ->  ( K  -  J )  <  N
) )
132130, 131syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( ( ( K  -  J )  <_  K  /\  K  <  N )  ->  ( K  -  J )  <  N ) )
133120, 132mpand 711 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( K  < 
N  ->  ( K  -  J )  <  N
) )
134133impancom 456 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  NN0  /\  K  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  ( K  -  J )  <  N
) )
135134imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  K  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  ( K  -  J )  <  N )
136135adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. 
NN0  /\  K  <  N )  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )  /\  J  <  K )  -> 
( K  -  J
)  <  N )
137112, 114, 1363jca 1242 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
NN0  /\  K  <  N )  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )  /\  J  <  K )  -> 
( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
)
138137exp31 630 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  K  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  ( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  < 
N ) ) ) )
1391383adant2 1080 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  -> 
( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
) ) )
1409, 139sylbi 207 . . . . . . . . . . 11  |-  ( K  e.  ( 0..^ N )  ->  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N )  ->  ( J  <  K  ->  (
( K  -  J
)  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  <  N ) ) ) )
1411, 140syl 17 . . . . . . . . . 10  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  (
( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  -> 
( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
) ) )
142141com12 32 . . . . . . . . 9  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( K  e.  ( (
0..^ N )  \  { J } )  -> 
( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
) ) )
14310, 142sylbi 207 . . . . . . . 8  |-  ( J  e.  ( 0..^ N )  ->  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( J  <  K  ->  (
( K  -  J
)  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  <  N ) ) ) )
144143imp 445 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
) )
145106, 144sylbid 230 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( -.  K  <_  J  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  < 
N ) ) )
146145impcom 446 . . . . 5  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  < 
N ) )
147 elfzo1 12517 . . . . 5  |-  ( ( K  -  J )  e.  ( 1..^ N )  <->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  < 
N ) )
148146, 147sylibr 224 . . . 4  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( K  -  J )  e.  ( 1..^ N ) )
149 oveq1 6657 . . . . . . 7  |-  ( i  =  ( K  -  J )  ->  (
i  +  J )  =  ( ( K  -  J )  +  J ) )
1501, 64syl 17 . . . . . . . . 9  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  K  e.  CC )
1515zcnd 11483 . . . . . . . . 9  |-  ( J  e.  ( 0..^ N )  ->  J  e.  CC )
152 npcan 10290 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  J  e.  CC )  ->  ( ( K  -  J )  +  J
)  =  K )
153150, 151, 152syl2anr 495 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( ( K  -  J )  +  J
)  =  K )
154153adantl 482 . . . . . . 7  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( ( K  -  J )  +  J )  =  K )
155149, 154sylan9eqr 2678 . . . . . 6  |-  ( ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N ) 
\  { J }
) ) )  /\  i  =  ( K  -  J ) )  -> 
( i  +  J
)  =  K )
156155oveq1d 6665 . . . . 5  |-  ( ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N ) 
\  { J }
) ) )  /\  i  =  ( K  -  J ) )  -> 
( ( i  +  J )  mod  N
)  =  ( K  mod  N ) )
157156eqeq2d 2632 . . . 4  |-  ( ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N ) 
\  { J }
) ) )  /\  i  =  ( K  -  J ) )  -> 
( K  =  ( ( i  +  J
)  mod  N )  <->  K  =  ( K  mod  N ) ) )
158 zmodidfzoimp 12700 . . . . . . . 8  |-  ( K  e.  ( 0..^ N )  ->  ( K  mod  N )  =  K )
1591, 158syl 17 . . . . . . 7  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( K  mod  N )  =  K )
160159adantl 482 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  mod  N
)  =  K )
161160adantl 482 . . . . 5  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( K  mod  N )  =  K )
162161eqcomd 2628 . . . 4  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  K  =  ( K  mod  N ) )
163148, 157, 162rspcedvd 3317 . . 3  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
164163ex 450 . 2  |-  ( -.  K  <_  J  ->  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
165103, 164pm2.61i 176 1  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  ->  E. i  e.  (
1..^ N ) K  =  ( ( i  +  J )  mod 
N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465    mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669
This theorem is referenced by:  cshimadifsn  13575
  Copyright terms: Public domain W3C validator