Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neglimc Structured version   Visualization version   Unicode version

Theorem neglimc 39879
Description: Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
neglimc.f  |-  F  =  ( x  e.  A  |->  B )
neglimc.g  |-  G  =  ( x  e.  A  |-> 
-u B )
neglimc.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
neglimc.c  |-  ( ph  ->  C  e.  ( F lim
CC  D ) )
Assertion
Ref Expression
neglimc  |-  ( ph  -> 
-u C  e.  ( G lim CC  D ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    D( x)    F( x)    G( x)

Proof of Theorem neglimc
Dummy variables  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23639 . . . 4  |-  ( F lim
CC  D )  C_  CC
2 neglimc.c . . . 4  |-  ( ph  ->  C  e.  ( F lim
CC  D ) )
31, 2sseldi 3601 . . 3  |-  ( ph  ->  C  e.  CC )
43negcld 10379 . 2  |-  ( ph  -> 
-u C  e.  CC )
5 neglimc.b . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 neglimc.f . . . . . . . . 9  |-  F  =  ( x  e.  A  |->  B )
75, 6fmptd 6385 . . . . . . . 8  |-  ( ph  ->  F : A --> CC )
86, 5, 2limcmptdm 39867 . . . . . . . 8  |-  ( ph  ->  A  C_  CC )
9 limcrcl 23638 . . . . . . . . . 10  |-  ( C  e.  ( F lim CC  D )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  D  e.  CC ) )
102, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  D  e.  CC ) )
1110simp3d 1075 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
127, 8, 11ellimc3 23643 . . . . . . 7  |-  ( ph  ->  ( C  e.  ( F lim CC  D )  <-> 
( C  e.  CC  /\ 
A. y  e.  RR+  E. w  e.  RR+  A. v  e.  A  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y ) ) ) )
132, 12mpbid 222 . . . . . 6  |-  ( ph  ->  ( C  e.  CC  /\ 
A. y  e.  RR+  E. w  e.  RR+  A. v  e.  A  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y ) ) )
1413simprd 479 . . . . 5  |-  ( ph  ->  A. y  e.  RR+  E. w  e.  RR+  A. v  e.  A  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y ) )
1514r19.21bi 2932 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  A  ( ( v  =/=  D  /\  ( abs `  ( v  -  D ) )  < 
w )  ->  ( abs `  ( ( F `
 v )  -  C ) )  < 
y ) )
16 simplll 798 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  /\  v  e.  A )  ->  ph )
17163ad2ant1 1082 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  /\  v  e.  A
)  /\  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y )  /\  ( v  =/= 
D  /\  ( abs `  ( v  -  D
) )  <  w
) )  ->  ph )
18 simp1r 1086 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  /\  v  e.  A
)  /\  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y )  /\  ( v  =/= 
D  /\  ( abs `  ( v  -  D
) )  <  w
) )  ->  v  e.  A )
19 simp3 1063 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  /\  v  e.  A
)  /\  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y )  /\  ( v  =/= 
D  /\  ( abs `  ( v  -  D
) )  <  w
) )  ->  (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w ) )
20 simp2 1062 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  /\  v  e.  A
)  /\  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y )  /\  ( v  =/= 
D  /\  ( abs `  ( v  -  D
) )  <  w
) )  ->  (
( v  =/=  D  /\  ( abs `  (
v  -  D ) )  <  w )  ->  ( abs `  (
( F `  v
)  -  C ) )  <  y ) )
2119, 20mpd 15 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  /\  v  e.  A
)  /\  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y )  /\  ( v  =/= 
D  /\  ( abs `  ( v  -  D
) )  <  w
) )  ->  ( abs `  ( ( F `
 v )  -  C ) )  < 
y )
22 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ x
( ph  /\  v  e.  A )
23 neglimc.g . . . . . . . . . . . . . . . . . . 19  |-  G  =  ( x  e.  A  |-> 
-u B )
24 nfmpt1 4747 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
( x  e.  A  |-> 
-u B )
2523, 24nfcxfr 2762 . . . . . . . . . . . . . . . . . 18  |-  F/_ x G
26 nfcv 2764 . . . . . . . . . . . . . . . . . 18  |-  F/_ x
v
2725, 26nffv 6198 . . . . . . . . . . . . . . . . 17  |-  F/_ x
( G `  v
)
28 nfmpt1 4747 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x
( x  e.  A  |->  B )
296, 28nfcxfr 2762 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x F
3029, 26nffv 6198 . . . . . . . . . . . . . . . . . 18  |-  F/_ x
( F `  v
)
3130nfneg 10277 . . . . . . . . . . . . . . . . 17  |-  F/_ x -u ( F `  v
)
3227, 31nfeq 2776 . . . . . . . . . . . . . . . 16  |-  F/ x
( G `  v
)  =  -u ( F `  v )
3322, 32nfim 1825 . . . . . . . . . . . . . . 15  |-  F/ x
( ( ph  /\  v  e.  A )  ->  ( G `  v
)  =  -u ( F `  v )
)
34 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( x  =  v  ->  (
x  e.  A  <->  v  e.  A ) )
3534anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( x  =  v  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  v  e.  A ) ) )
36 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( x  =  v  ->  ( G `  x )  =  ( G `  v ) )
37 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  v  ->  ( F `  x )  =  ( F `  v ) )
3837negeqd 10275 . . . . . . . . . . . . . . . . 17  |-  ( x  =  v  ->  -u ( F `  x )  =  -u ( F `  v ) )
3936, 38eqeq12d 2637 . . . . . . . . . . . . . . . 16  |-  ( x  =  v  ->  (
( G `  x
)  =  -u ( F `  x )  <->  ( G `  v )  =  -u ( F `  v ) ) )
4035, 39imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( x  =  v  ->  (
( ( ph  /\  x  e.  A )  ->  ( G `  x
)  =  -u ( F `  x )
)  <->  ( ( ph  /\  v  e.  A )  ->  ( G `  v )  =  -u ( F `  v ) ) ) )
41 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
425negcld 10379 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  CC )
4323fvmpt2 6291 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  /\  -u B  e.  CC )  ->  ( G `  x )  =  -u B )
4441, 42, 43syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  -u B )
456fvmpt2 6291 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  A  /\  B  e.  CC )  ->  ( F `  x
)  =  B )
4641, 5, 45syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
4746negeqd 10275 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  -u ( F `  x )  =  -u B )
4844, 47eqtr4d 2659 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  -u ( F `  x ) )
4933, 40, 48chvar 2262 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  A )  ->  ( G `  v )  =  -u ( F `  v ) )
5049oveq1d 6665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  A )  ->  (
( G `  v
)  -  -u C
)  =  ( -u ( F `  v )  -  -u C ) )
517ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  A )  ->  ( F `  v )  e.  CC )
523adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  A )  ->  C  e.  CC )
5351, 52negsubdi3d 39506 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  A )  ->  -u (
( F `  v
)  -  C )  =  ( -u ( F `  v )  -  -u C ) )
5450, 53eqtr4d 2659 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  A )  ->  (
( G `  v
)  -  -u C
)  =  -u (
( F `  v
)  -  C ) )
5554fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  A )  ->  ( abs `  ( ( G `
 v )  -  -u C ) )  =  ( abs `  -u (
( F `  v
)  -  C ) ) )
5651, 52subcld 10392 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  A )  ->  (
( F `  v
)  -  C )  e.  CC )
5756absnegd 14188 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  A )  ->  ( abs `  -u ( ( F `
 v )  -  C ) )  =  ( abs `  (
( F `  v
)  -  C ) ) )
5855, 57eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  A )  ->  ( abs `  ( ( G `
 v )  -  -u C ) )  =  ( abs `  (
( F `  v
)  -  C ) ) )
5958adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  A )  /\  ( abs `  ( ( F `
 v )  -  C ) )  < 
y )  ->  ( abs `  ( ( G `
 v )  -  -u C ) )  =  ( abs `  (
( F `  v
)  -  C ) ) )
60 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  A )  /\  ( abs `  ( ( F `
 v )  -  C ) )  < 
y )  ->  ( abs `  ( ( F `
 v )  -  C ) )  < 
y )
6159, 60eqbrtrd 4675 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  A )  /\  ( abs `  ( ( F `
 v )  -  C ) )  < 
y )  ->  ( abs `  ( ( G `
 v )  -  -u C ) )  < 
y )
6217, 18, 21, 61syl21anc 1325 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  /\  v  e.  A
)  /\  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y )  /\  ( v  =/= 
D  /\  ( abs `  ( v  -  D
) )  <  w
) )  ->  ( abs `  ( ( G `
 v )  -  -u C ) )  < 
y )
63623exp 1264 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  /\  v  e.  A )  ->  ( ( ( v  =/=  D  /\  ( abs `  ( v  -  D ) )  < 
w )  ->  ( abs `  ( ( F `
 v )  -  C ) )  < 
y )  ->  (
( v  =/=  D  /\  ( abs `  (
v  -  D ) )  <  w )  ->  ( abs `  (
( G `  v
)  -  -u C
) )  <  y
) ) )
6463ralimdva 2962 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  w  e.  RR+ )  ->  ( A. v  e.  A  ( ( v  =/= 
D  /\  ( abs `  ( v  -  D
) )  <  w
)  ->  ( abs `  ( ( F `  v )  -  C
) )  <  y
)  ->  A. v  e.  A  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( G `  v
)  -  -u C
) )  <  y
) ) )
6564reximdva 3017 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. w  e.  RR+  A. v  e.  A  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  C ) )  <  y )  ->  E. w  e.  RR+  A. v  e.  A  ( ( v  =/=  D  /\  ( abs `  (
v  -  D ) )  <  w )  ->  ( abs `  (
( G `  v
)  -  -u C
) )  <  y
) ) )
6615, 65mpd 15 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  A  ( ( v  =/=  D  /\  ( abs `  ( v  -  D ) )  < 
w )  ->  ( abs `  ( ( G `
 v )  -  -u C ) )  < 
y ) )
6766ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  RR+  E. w  e.  RR+  A. v  e.  A  ( (
v  =/=  D  /\  ( abs `  ( v  -  D ) )  <  w )  -> 
( abs `  (
( G `  v
)  -  -u C
) )  <  y
) )
6842, 23fmptd 6385 . . 3  |-  ( ph  ->  G : A --> CC )
6968, 8, 11ellimc3 23643 . 2  |-  ( ph  ->  ( -u C  e.  ( G lim CC  D
)  <->  ( -u C  e.  CC  /\  A. y  e.  RR+  E. w  e.  RR+  A. v  e.  A  ( ( v  =/= 
D  /\  ( abs `  ( v  -  D
) )  <  w
)  ->  ( abs `  ( ( G `  v )  -  -u C
) )  <  y
) ) ) )
704, 67, 69mpbir2and 957 1  |-  ( ph  -> 
-u C  e.  ( G lim CC  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    < clt 10074    - cmin 10266   -ucneg 10267   RR+crp 11832   abscabs 13974   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  sublimc  39884  reclimc  39885
  Copyright terms: Public domain W3C validator