Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclimc Structured version   Visualization version   Unicode version

Theorem reclimc 39885
Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
reclimc.f  |-  F  =  ( x  e.  A  |->  B )
reclimc.g  |-  G  =  ( x  e.  A  |->  ( 1  /  B
) )
reclimc.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ( CC  \  {
0 } ) )
reclimc.c  |-  ( ph  ->  C  e.  ( F lim
CC  D ) )
reclimc.cne0  |-  ( ph  ->  C  =/=  0 )
Assertion
Ref Expression
reclimc  |-  ( ph  ->  ( 1  /  C
)  e.  ( G lim
CC  D ) )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    G( x)

Proof of Theorem reclimc
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( x  e.  A  |->  ( C  -  B ) )  =  ( x  e.  A  |->  ( C  -  B ) )
2 eqid 2622 . . . 4  |-  ( x  e.  A  |->  ( B  x.  C ) )  =  ( x  e.  A  |->  ( B  x.  C ) )
3 eqid 2622 . . . 4  |-  ( x  e.  A  |->  ( ( C  -  B )  /  ( B  x.  C ) ) )  =  ( x  e.  A  |->  ( ( C  -  B )  / 
( B  x.  C
) ) )
4 limccl 23639 . . . . . . 7  |-  ( F lim
CC  D )  C_  CC
5 reclimc.c . . . . . . 7  |-  ( ph  ->  C  e.  ( F lim
CC  D ) )
64, 5sseldi 3601 . . . . . 6  |-  ( ph  ->  C  e.  CC )
76adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
8 reclimc.b . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ( CC  \  {
0 } ) )
98eldifad 3586 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
107, 9subcld 10392 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( C  -  B )  e.  CC )
119, 7mulcld 10060 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B  x.  C )  e.  CC )
12 eldifsni 4320 . . . . . . . . 9  |-  ( B  e.  ( CC  \  { 0 } )  ->  B  =/=  0
)
138, 12syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  0 )
14 reclimc.cne0 . . . . . . . . 9  |-  ( ph  ->  C  =/=  0 )
1514adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
169, 7, 13, 15mulne0d 10679 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( B  x.  C )  =/=  0 )
1716neneqd 2799 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -.  ( B  x.  C
)  =  0 )
18 elsng 4191 . . . . . . 7  |-  ( ( B  x.  C )  e.  CC  ->  (
( B  x.  C
)  e.  { 0 }  <->  ( B  x.  C )  =  0 ) )
1911, 18syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( B  x.  C
)  e.  { 0 }  <->  ( B  x.  C )  =  0 ) )
2017, 19mtbird 315 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  -.  ( B  x.  C
)  e.  { 0 } )
2111, 20eldifd 3585 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( B  x.  C )  e.  ( CC  \  {
0 } ) )
22 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
23 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  -u B
)  =  ( x  e.  A  |->  -u B
)
24 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  ( C  +  -u B ) )  =  ( x  e.  A  |->  ( C  +  -u B ) )
259negcld 10379 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  CC )
26 reclimc.f . . . . . . . 8  |-  F  =  ( x  e.  A  |->  B )
2726, 9, 5limcmptdm 39867 . . . . . . 7  |-  ( ph  ->  A  C_  CC )
28 limcrcl 23638 . . . . . . . . 9  |-  ( C  e.  ( F lim CC  D )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  D  e.  CC ) )
295, 28syl 17 . . . . . . . 8  |-  ( ph  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  D  e.  CC ) )
3029simp3d 1075 . . . . . . 7  |-  ( ph  ->  D  e.  CC )
3122, 27, 6, 30constlimc 39856 . . . . . 6  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  C ) lim CC  D ) )
3226, 23, 9, 5neglimc 39879 . . . . . 6  |-  ( ph  -> 
-u C  e.  ( ( x  e.  A  |-> 
-u B ) lim CC  D ) )
3322, 23, 24, 7, 25, 31, 32addlimc 39880 . . . . 5  |-  ( ph  ->  ( C  +  -u C )  e.  ( ( x  e.  A  |->  ( C  +  -u B ) ) lim CC  D ) )
346negidd 10382 . . . . 5  |-  ( ph  ->  ( C  +  -u C )  =  0 )
357, 9negsubd 10398 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( C  +  -u B )  =  ( C  -  B ) )
3635mpteq2dva 4744 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( C  +  -u B ) )  =  ( x  e.  A  |->  ( C  -  B
) ) )
3736oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  +  -u B ) ) lim CC  D )  =  ( ( x  e.  A  |->  ( C  -  B
) ) lim CC  D
) )
3833, 34, 373eltr3d 2715 . . . 4  |-  ( ph  ->  0  e.  ( ( x  e.  A  |->  ( C  -  B ) ) lim CC  D ) )
3926, 22, 2, 9, 7, 5, 31mullimc 39848 . . . 4  |-  ( ph  ->  ( C  x.  C
)  e.  ( ( x  e.  A  |->  ( B  x.  C ) ) lim CC  D ) )
406, 6, 14, 14mulne0d 10679 . . . 4  |-  ( ph  ->  ( C  x.  C
)  =/=  0 )
411, 2, 3, 10, 21, 38, 39, 400ellimcdiv 39881 . . 3  |-  ( ph  ->  0  e.  ( ( x  e.  A  |->  ( ( C  -  B
)  /  ( B  x.  C ) ) ) lim CC  D ) )
42 1cnd 10056 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  1  e.  CC )
4342, 9, 42, 7, 13, 15divsubdivd 10846 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( 1  /  B
)  -  ( 1  /  C ) )  =  ( ( ( 1  x.  C )  -  ( 1  x.  B ) )  / 
( B  x.  C
) ) )
447mulid2d 10058 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
1  x.  C )  =  C )
459mulid2d 10058 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
1  x.  B )  =  B )
4644, 45oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( 1  x.  C
)  -  ( 1  x.  B ) )  =  ( C  -  B ) )
4746oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( 1  x.  C )  -  (
1  x.  B ) )  /  ( B  x.  C ) )  =  ( ( C  -  B )  / 
( B  x.  C
) ) )
4843, 47eqtr2d 2657 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( C  -  B
)  /  ( B  x.  C ) )  =  ( ( 1  /  B )  -  ( 1  /  C
) ) )
4948mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( ( C  -  B )  /  ( B  x.  C )
) )  =  ( x  e.  A  |->  ( ( 1  /  B
)  -  ( 1  /  C ) ) ) )
5049oveq1d 6665 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  ( ( C  -  B )  / 
( B  x.  C
) ) ) lim CC  D )  =  ( ( x  e.  A  |->  ( ( 1  /  B )  -  (
1  /  C ) ) ) lim CC  D
) )
5141, 50eleqtrd 2703 . 2  |-  ( ph  ->  0  e.  ( ( x  e.  A  |->  ( ( 1  /  B
)  -  ( 1  /  C ) ) ) lim CC  D ) )
52 reclimc.g . . 3  |-  G  =  ( x  e.  A  |->  ( 1  /  B
) )
53 eqid 2622 . . 3  |-  ( x  e.  A  |->  ( ( 1  /  B )  -  ( 1  /  C ) ) )  =  ( x  e.  A  |->  ( ( 1  /  B )  -  ( 1  /  C
) ) )
549, 13reccld 10794 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
1  /  B )  e.  CC )
556, 14reccld 10794 . . 3  |-  ( ph  ->  ( 1  /  C
)  e.  CC )
5652, 53, 27, 54, 30, 55ellimcabssub0 39849 . 2  |-  ( ph  ->  ( ( 1  /  C )  e.  ( G lim CC  D )  <->  0  e.  ( ( x  e.  A  |->  ( ( 1  /  B
)  -  ( 1  /  C ) ) ) lim CC  D ) ) )
5751, 56mpbird 247 1  |-  ( ph  ->  ( 1  /  C
)  e.  ( G lim
CC  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   {csn 4177    |-> cmpt 4729   dom cdm 5114   -->wf 5884  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  divlimc  39888  fourierdlem62  40385
  Copyright terms: Public domain W3C validator