MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const Structured version   Visualization version   Unicode version

Theorem itg2const 23507
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itg2const  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( B  x.  ( vol `  A ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem itg2const
StepHypRef Expression
1 reex 10027 . . . . . . 7  |-  RR  e.  _V
21a1i 11 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  RR  e.  _V )
3 simpl3 1066 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  /\  x  e.  RR )  ->  B  e.  ( 0 [,) +oo )
)
4 1re 10039 . . . . . . . 8  |-  1  e.  RR
5 0re 10040 . . . . . . . 8  |-  0  e.  RR
64, 5keepel 4155 . . . . . . 7  |-  if ( x  e.  A , 
1 ,  0 )  e.  RR
76a1i 11 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  1 ,  0 )  e.  RR )
8 fconstmpt 5163 . . . . . . 7  |-  ( RR 
X.  { B }
)  =  ( x  e.  RR  |->  B )
98a1i 11 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( RR  X.  { B } )  =  ( x  e.  RR  |->  B ) )
10 eqidd 2623 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) )
112, 3, 7, 9, 10offval2 6914 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( ( RR 
X.  { B }
)  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) )  =  ( x  e.  RR  |->  ( B  x.  if ( x  e.  A ,  1 ,  0 ) ) ) )
12 ovif2 6738 . . . . . . 7  |-  ( B  x.  if ( x  e.  A ,  1 ,  0 ) )  =  if ( x  e.  A ,  ( B  x.  1 ) ,  ( B  x.  0 ) )
13 simp3 1063 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  B  e.  ( 0 [,) +oo )
)
14 elrege0 12278 . . . . . . . . . . . 12  |-  ( B  e.  ( 0 [,) +oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
1513, 14sylib 208 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( B  e.  RR  /\  0  <_  B ) )
1615simpld 475 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  B  e.  RR )
1716recnd 10068 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  B  e.  CC )
1817mulid1d 10057 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( B  x.  1 )  =  B )
1917mul01d 10235 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( B  x.  0 )  =  0 )
2018, 19ifeq12d 4106 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  if ( x  e.  A ,  ( B  x.  1 ) ,  ( B  x.  0 ) )  =  if ( x  e.  A ,  B , 
0 ) )
2112, 20syl5eq 2668 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( B  x.  if ( x  e.  A ,  1 ,  0 ) )  =  if ( x  e.  A ,  B ,  0 ) )
2221mpteq2dv 4745 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( x  e.  RR  |->  ( B  x.  if ( x  e.  A ,  1 ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
2311, 22eqtrd 2656 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( ( RR 
X.  { B }
)  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
24 eqid 2622 . . . . . . 7  |-  ( x  e.  RR  |->  if ( x  e.  A , 
1 ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
1 ,  0 ) )
2524i1f1 23457 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )  e.  dom  S.1 )
26253adant3 1081 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )  e.  dom  S.1 )
2726, 16i1fmulc 23470 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( ( RR 
X.  { B }
)  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) )  e. 
dom  S.1 )
2823, 27eqeltrrd 2702 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  e.  dom  S.1 )
2915simprd 479 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  0  <_  B
)
30 0le0 11110 . . . . . 6  |-  0  <_  0
31 breq2 4657 . . . . . . 7  |-  ( B  =  if ( x  e.  A ,  B ,  0 )  -> 
( 0  <_  B  <->  0  <_  if ( x  e.  A ,  B ,  0 ) ) )
32 breq2 4657 . . . . . . 7  |-  ( 0  =  if ( x  e.  A ,  B ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( x  e.  A ,  B ,  0 ) ) )
3331, 32ifboth 4124 . . . . . 6  |-  ( ( 0  <_  B  /\  0  <_  0 )  -> 
0  <_  if (
x  e.  A ,  B ,  0 ) )
3429, 30, 33sylancl 694 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  0  <_  if ( x  e.  A ,  B ,  0 ) )
3534ralrimivw 2967 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  A. x  e.  RR  0  <_  if ( x  e.  A ,  B ,  0 ) )
36 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
3736a1i 11 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  RR  C_  CC )
3816adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  /\  x  e.  RR )  ->  B  e.  RR )
39 ifcl 4130 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( x  e.  A ,  B , 
0 )  e.  RR )
4038, 5, 39sylancl 694 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  B ,  0 )  e.  RR )
4140ralrimiva 2966 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  A. x  e.  RR  if ( x  e.  A ,  B ,  0 )  e.  RR )
42 eqid 2622 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )
4342fnmpt 6020 . . . . . . 7  |-  ( A. x  e.  RR  if ( x  e.  A ,  B ,  0 )  e.  RR  ->  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  Fn  RR )
4441, 43syl 17 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  Fn  RR )
4537, 440pledm 23440 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( 0p  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  <->  ( RR  X.  { 0 } )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
465a1i 11 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  /\  x  e.  RR )  ->  0  e.  RR )
47 fconstmpt 5163 . . . . . . 7  |-  ( RR 
X.  { 0 } )  =  ( x  e.  RR  |->  0 )
4847a1i 11 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( RR  X.  { 0 } )  =  ( x  e.  RR  |->  0 ) )
49 eqidd 2623 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
502, 46, 40, 48, 49ofrfval2 6915 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( ( RR 
X.  { 0 } )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  <->  A. x  e.  RR  0  <_  if ( x  e.  A ,  B ,  0 ) ) )
5145, 50bitrd 268 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( 0p  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  <->  A. x  e.  RR  0  <_  if ( x  e.  A ,  B ,  0 ) ) )
5235, 51mpbird 247 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  0p  oR  <_  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
53 itg2itg1 23503 . . 3  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  e.  dom  S.1  /\  0p  oR  <_  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
5428, 52, 53syl2anc 693 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
5526, 16itg1mulc 23471 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.1 `  (
( RR  X.  { B } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) ) )  =  ( B  x.  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) ) ) )
5623fveq2d 6195 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.1 `  (
( RR  X.  { B } )  oF  x.  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) ) )  =  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
5724itg11 23458 . . . . 5  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) )  =  ( vol `  A
) )
58573adant3 1081 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) ) )  =  ( vol `  A
) )
5958oveq2d 6666 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( B  x.  ( S.1 `  ( x  e.  RR  |->  if ( x  e.  A , 
1 ,  0 ) ) ) )  =  ( B  x.  ( vol `  A ) ) )
6055, 56, 593eqtr3d 2664 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.1 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( B  x.  ( vol `  A ) ) )
6154, 60eqtrd 2656 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  ( 0 [,) +oo ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  =  ( B  x.  ( vol `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071    <_ cle 10075   [,)cico 12177   volcvol 23232   S.1citg1 23384   S.2citg2 23385   0pc0p 23436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-0p 23437
This theorem is referenced by:  itg2const2  23508  itg2gt0  23527  itg2cnlem2  23529  iblconst  23584  itgconst  23585  itg2gt0cn  33465  bddiblnc  33480  ftc1anclem7  33491
  Copyright terms: Public domain W3C validator