MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem1 Structured version   Visualization version   Unicode version

Theorem itg2cnlem1 23528
Description: Lemma for itgcn 23609. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2cn.2  |-  ( ph  ->  F  e. MblFn )
itg2cn.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
Assertion
Ref Expression
itg2cnlem1  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
Distinct variable groups:    x, n, F    ph, n, x

Proof of Theorem itg2cnlem1
Dummy variables  m  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . . . . . . 10  |-  ( F `
 x )  e. 
_V
2 c0ex 10034 . . . . . . . . . 10  |-  0  e.  _V
31, 2ifex 4156 . . . . . . . . 9  |-  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 )  e.  _V
4 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
54fvmpt2 6291 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x )  =  if ( ( F `
 x )  <_  n ,  ( F `  x ) ,  0 ) )
63, 5mpan2 707 . . . . . . . 8  |-  ( x  e.  RR  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
)  =  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
76mpteq2dv 4745 . . . . . . 7  |-  ( x  e.  RR  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
87rneqd 5353 . . . . . 6  |-  ( x  e.  RR  ->  ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) )  =  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
98supeq1d 8352 . . . . 5  |-  ( x  e.  RR  ->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  x ) ) ,  RR ,  <  )  =  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
109mpteq2ia 4740 . . . 4  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) ) ,  RR ,  <  ) )  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
11 nfcv 2764 . . . . 5  |-  F/_ y sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) ) ,  RR ,  <  )
12 nfcv 2764 . . . . . . . 8  |-  F/_ x NN
13 nfmpt1 4747 . . . . . . . . . . 11  |-  F/_ x
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )
1412, 13nfmpt 4746 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
15 nfcv 2764 . . . . . . . . . 10  |-  F/_ x m
1614, 15nffv 6198 . . . . . . . . 9  |-  F/_ x
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )
17 nfcv 2764 . . . . . . . . 9  |-  F/_ x
y
1816, 17nffv 6198 . . . . . . . 8  |-  F/_ x
( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
1912, 18nfmpt 4746 . . . . . . 7  |-  F/_ x
( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
)
2019nfrn 5368 . . . . . 6  |-  F/_ x ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
)
21 nfcv 2764 . . . . . 6  |-  F/_ x RR
22 nfcv 2764 . . . . . 6  |-  F/_ x  <
2320, 21, 22nfsup 8357 . . . . 5  |-  F/_ x sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) ,  RR ,  <  )
24 fveq2 6191 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )
2524mpteq2dv 4745 . . . . . . . 8  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) ) )
26 breq2 4657 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  m
) )
2726ifbid 4108 . . . . . . . . . . . 12  |-  ( n  =  m  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
2827mpteq2dv 4745 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
2928fveq1d 6193 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
3029cbvmptv 4750 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )  =  ( m  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
31 eqid 2622 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )  =  ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
32 reex 10027 . . . . . . . . . . . . 13  |-  RR  e.  _V
3332mptex 6486 . . . . . . . . . . . 12  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  e.  _V
3428, 31, 33fvmpt 6282 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
3534fveq1d 6193 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `
 y ) )
3635mpteq2ia 4740 . . . . . . . . 9  |-  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) )  =  ( m  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
3730, 36eqtr4i 2647 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  y
) )  =  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y ) )
3825, 37syl6eq 2672 . . . . . . 7  |-  ( x  =  y  ->  (
n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  x
) )  =  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y ) ) )
3938rneqd 5353 . . . . . 6  |-  ( x  =  y  ->  ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) )  =  ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) )
4039supeq1d 8352 . . . . 5  |-  ( x  =  y  ->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  x ) ) ,  RR ,  <  )  =  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
) ,  RR ,  <  ) )
4111, 23, 40cbvmpt 4749 . . . 4  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `
 x ) ) ,  RR ,  <  ) )  =  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )
) ,  RR ,  <  ) )
4210, 41eqtr3i 2646 . . 3  |-  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )  =  ( y  e.  RR  |->  sup ( ran  ( m  e.  NN  |->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
) ) ,  RR ,  <  ) )
43 fveq2 6191 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
4443breq1d 4663 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  <_  m  <->  ( F `  y )  <_  m
) )
4544, 43ifbieq1d 4109 . . . . . 6  |-  ( x  =  y  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
4645cbvmptv 4750 . . . . 5  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
4734adantl 482 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
48 nnre 11027 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  RR )
4948ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  m  e.  RR )
5049rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  m  e.  RR* )
51 elioopnf 12267 . . . . . . . . . . 11  |-  ( m  e.  RR*  ->  ( ( F `  y )  e.  ( m (,) +oo )  <->  ( ( F `
 y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  e.  ( m (,) +oo )  <->  ( ( F `  y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
53 itg2cn.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
54 ffn 6045 . . . . . . . . . . . . . 14  |-  ( F : RR --> ( 0 [,) +oo )  ->  F  Fn  RR )
5553, 54syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  RR )
5655ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  F  Fn  RR )
57 elpreima 6337 . . . . . . . . . . . 12  |-  ( F  Fn  RR  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( y  e.  RR  /\  ( F `  y
)  e.  ( m (,) +oo ) ) ) )
5856, 57syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( y  e.  RR  /\  ( F `  y
)  e.  ( m (,) +oo ) ) ) )
59 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  y  e.  RR )
6059biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  e.  ( m (,) +oo )  <->  ( y  e.  RR  /\  ( F `
 y )  e.  ( m (,) +oo ) ) ) )
6158, 60bitr4d 271 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
( F `  y
)  e.  ( m (,) +oo ) ) )
62 rge0ssre 12280 . . . . . . . . . . . . . 14  |-  ( 0 [,) +oo )  C_  RR
63 fss 6056 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  ->  F : RR --> RR )
6453, 62, 63sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  F : RR --> RR )
6564adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  F : RR
--> RR )
6665ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  e.  RR )
6766biantrurd 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
m  <  ( F `  y )  <->  ( ( F `  y )  e.  RR  /\  m  < 
( F `  y
) ) ) )
6852, 61, 673bitr4d 300 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( `' F " ( m (,) +oo ) )  <-> 
m  <  ( F `  y ) ) )
6968notbid 308 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( -.  y  e.  ( `' F " ( m (,) +oo ) )  <->  -.  m  <  ( F `
 y ) ) )
70 eldif 3584 . . . . . . . . . 10  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  <->  ( y  e.  RR  /\  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7170baib 944 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7271adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  -.  y  e.  ( `' F "
( m (,) +oo ) ) ) )
7366, 49lenltd 10183 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( F `  y
)  <_  m  <->  -.  m  <  ( F `  y
) ) )
7469, 72, 733bitr4d 300 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  <->  ( F `  y )  <_  m
) )
7574ifbid 4108 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  =  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) )
7675mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  RR  |->  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) ) )
7746, 47, 763eqtr4a 2682 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( y  e.  RR  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) ) )
78 difss 3737 . . . . . 6  |-  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  C_  RR
7978a1i 11 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( RR 
\  ( `' F " ( m (,) +oo ) ) )  C_  RR )
80 rembl 23308 . . . . . 6  |-  RR  e.  dom  vol
8180a1i 11 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  dom  vol )
82 fvex 6201 . . . . . . 7  |-  ( F `
 y )  e. 
_V
8382, 2ifex 4156 . . . . . 6  |-  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 )  e.  _V
8483a1i 11 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  e.  _V )
85 eldifn 3733 . . . . . . 7  |-  ( y  e.  ( RR  \ 
( RR  \  ( `' F " ( m (,) +oo ) ) ) )  ->  -.  y  e.  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )
8685adantl 482 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ) )  ->  -.  y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )
8786iffalsed 4097 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  ( RR  \  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ) )  ->  if (
y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 )  =  0 )
88 iftrue 4092 . . . . . . . . 9  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  ->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 )  =  ( F `  y ) )
8988mpteq2ia 4740 . . . . . . . 8  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) )
90 resmpt 5449 . . . . . . . . 9  |-  ( ( RR  \  ( `' F " ( m (,) +oo ) ) )  C_  RR  ->  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) ) )
9178, 90ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  =  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  ( F `  y ) )
9289, 91eqtr4i 2647 . . . . . . 7  |-  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  =  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )
9353feqmptd 6249 . . . . . . . . 9  |-  ( ph  ->  F  =  ( y  e.  RR  |->  ( F `
 y ) ) )
94 itg2cn.2 . . . . . . . . 9  |-  ( ph  ->  F  e. MblFn )
9593, 94eqeltrrd 2702 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR  |->  ( F `  y ) )  e. MblFn )
96 mbfima 23399 . . . . . . . . . 10  |-  ( ( F  e. MblFn  /\  F : RR
--> RR )  ->  ( `' F " ( m (,) +oo ) )  e.  dom  vol )
9794, 64, 96syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( m (,) +oo ) )  e.  dom  vol )
98 cmmbl 23302 . . . . . . . . 9  |-  ( ( `' F " ( m (,) +oo ) )  e.  dom  vol  ->  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e.  dom  vol )
9997, 98syl 17 . . . . . . . 8  |-  ( ph  ->  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e.  dom  vol )
100 mbfres 23411 . . . . . . . 8  |-  ( ( ( y  e.  RR  |->  ( F `  y ) )  e. MblFn  /\  ( RR  \  ( `' F " ( m (,) +oo ) ) )  e. 
dom  vol )  ->  (
( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F "
( m (,) +oo ) ) ) )  e. MblFn )
10195, 99, 100syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  RR  |->  ( F `  y ) )  |`  ( RR  \  ( `' F " ( m (,) +oo ) ) ) )  e. MblFn )
10292, 101syl5eqel 2705 . . . . . 6  |-  ( ph  ->  ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  e. MblFn )
103102adantr 481 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  ( RR  \ 
( `' F "
( m (,) +oo ) ) )  |->  if ( y  e.  ( RR  \  ( `' F " ( m (,) +oo ) ) ) ,  ( F `
 y ) ,  0 ) )  e. MblFn
)
10479, 81, 84, 87, 103mbfss 23413 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( y  e.  RR  |->  if ( y  e.  ( RR 
\  ( `' F " ( m (,) +oo ) ) ) ,  ( F `  y
) ,  0 ) )  e. MblFn )
10577, 104eqeltrd 2701 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  e. MblFn )
10653ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
107 0e0icopnf 12282 . . . . . . 7  |-  0  e.  ( 0 [,) +oo )
108 ifcl 4130 . . . . . . 7  |-  ( ( ( F `  x
)  e.  ( 0 [,) +oo )  /\  0  e.  ( 0 [,) +oo ) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  ( 0 [,) +oo ) )
109106, 107, 108sylancl 694 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  e.  ( 0 [,) +oo ) )
110109adantlr 751 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  ( 0 [,) +oo ) )
111 eqid 2622 . . . . 5  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
112110, 111fmptd 6385 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
11347feq1d 6030 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) : RR --> ( 0 [,) +oo ) 
<->  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) : RR --> ( 0 [,) +oo ) ) )
114112, 113mpbird 247 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) : RR --> ( 0 [,) +oo ) )
115 elrege0 12278 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
116106, 115sylib 208 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
117116simpld 475 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
118117adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
119118adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  e.  RR )
120119leidd 10594 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  ( F `  x )
)
121 iftrue 4092 . . . . . . . . 9  |-  ( ( F `  x )  <_  m  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
122121adantl 482 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  m , 
( F `  x
) ,  0 )  =  ( F `  x ) )
12348ad3antlr 767 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  m  e.  RR )
124 peano2re 10209 . . . . . . . . . . 11  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
125123, 124syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( m  +  1 )  e.  RR )
126 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  m
)
127123lep1d 10955 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  m  <_  ( m  +  1 ) )
128119, 123, 125, 126, 127letrd 10194 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  ( F `  x )  <_  (
m  +  1 ) )
129128iftrued 4094 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 )  =  ( F `  x ) )
130120, 122, 1293brtr4d 4685 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  ( F `  x )  <_  m
)  ->  if (
( F `  x
)  <_  m , 
( F `  x
) ,  0 )  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) )
131 iffalse 4095 . . . . . . . . 9  |-  ( -.  ( F `  x
)  <_  m  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  0 )
132131adantl 482 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  0 )
133116simprd 479 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
134 0le0 11110 . . . . . . . . . . 11  |-  0  <_  0
135 breq2 4657 . . . . . . . . . . . 12  |-  ( ( F `  x )  =  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 )  -> 
( 0  <_  ( F `  x )  <->  0  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) ) )
136 breq2 4657 . . . . . . . . . . . 12  |-  ( 0  =  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) ) )
137135, 136ifboth 4124 . . . . . . . . . . 11  |-  ( ( 0  <_  ( F `  x )  /\  0  <_  0 )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
138133, 134, 137sylancl 694 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) )
139138adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
140139adantr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  0  <_  if ( ( F `
 x )  <_ 
( m  +  1 ) ,  ( F `
 x ) ,  0 ) )
141132, 140eqbrtrd 4675 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  /\  -.  ( F `
 x )  <_  m )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
142130, 141pm2.61dan 832 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
143142ralrimiva 2966 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) )
1441, 2ifex 4156 . . . . . . 7  |-  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 )  e.  _V
145144a1i 11 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 )  e.  _V )
146 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )
147 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) ) )
14881, 110, 145, 146, 147ofrfval2 6915 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  ( x  e.  RR  |->  if ( ( F `  x )  <_  ( m  + 
1 ) ,  ( F `  x ) ,  0 ) )  <->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  if (
( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) ) )
149143, 148mpbird 247 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
150 peano2nn 11032 . . . . . 6  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
151150adantl 482 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  1 )  e.  NN )
152 breq2 4657 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  (
m  +  1 ) ) )
153152ifbid 4108 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )
154153mpteq2dv 4745 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
15532mptex 6486 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  ( m  +  1 ) ,  ( F `  x
) ,  0 ) )  e.  _V
156154, 31, 155fvmpt 6282 . . . . 5  |-  ( ( m  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  ( m  +  1
) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
157151, 156syl 17 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  ( m  +  1
) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  (
m  +  1 ) ,  ( F `  x ) ,  0 ) ) )
158149, 47, 1573brtr4d 4685 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  oR  <_  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  (
m  +  1 ) ) )
15964ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 y )  e.  RR )
16034adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
161160fveq1d 6193 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `
 y ) )
162117leidd 10594 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  <_ 
( F `  x
) )
163 breq1 4656 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  -> 
( ( F `  x )  <_  ( F `  x )  <->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) ) )
164 breq1 4656 . . . . . . . . . . . . . 14  |-  ( 0  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  -> 
( 0  <_  ( F `  x )  <->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) ) )
165163, 164ifboth 4124 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  <_  ( F `  x )  /\  0  <_  ( F `  x
) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
166162, 133, 165syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  <_  ( F `  x ) )
167166adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
168167ralrimiva 2966 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_ 
( F `  x
) )
16932a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  _V )
1701, 2ifex 4156 . . . . . . . . . . . 12  |-  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 )  e.  _V
171170a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  e.  _V )
17253feqmptd 6249 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( x  e.  RR  |->  ( F `
 x ) ) )
173172adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  F  =  ( x  e.  RR  |->  ( F `  x ) ) )
174169, 171, 118, 146, 173ofrfval2 6915 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  F  <->  A. x  e.  RR  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_ 
( F `  x
) ) )
175168, 174mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  oR  <_  F )
176171, 111fmptd 6385 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) : RR --> _V )
177 ffn 6045 . . . . . . . . . . 11  |-  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) : RR --> _V  ->  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  Fn  RR )
178176, 177syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  Fn  RR )
17955adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  F  Fn  RR )
180 inidm 3822 . . . . . . . . . 10  |-  ( RR 
i^i  RR )  =  RR
181 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
) )
182 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  ( F `  y )  =  ( F `  y ) )
183178, 179, 169, 169, 180, 181, 182ofrfval 6905 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )  oR  <_  F  <->  A. y  e.  RR  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) `  y )  <_  ( F `  y ) ) )
184175, 183mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  A. y  e.  RR  ( ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) `  y )  <_  ( F `  y ) )
185184r19.21bi 2932 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  y  e.  RR )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  <_  ( F `  y ) )
186185an32s 846 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) `  y
)  <_  ( F `  y ) )
187161, 186eqbrtrd 4675 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  NN )  ->  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  <_ 
( F `  y
) )
188187ralrimiva 2966 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  ( F `  y ) )
189 breq2 4657 . . . . . 6  |-  ( z  =  ( F `  y )  ->  (
( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  z  <->  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  ( F `  y ) ) )
190189ralbidv 2986 . . . . 5  |-  ( z  =  ( F `  y )  ->  ( A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  z  <->  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) `  y )  <_  ( F `  y
) ) )
191190rspcev 3309 . . . 4  |-  ( ( ( F `  y
)  e.  RR  /\  A. m  e.  NN  (
( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `
 y )  <_ 
( F `  y
) )  ->  E. z  e.  RR  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  z )
192159, 188, 191syl2anc 693 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  E. z  e.  RR  A. m  e.  NN  ( ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) `  y
)  <_  z )
19328fveq2d 6195 . . . . . . 7  |-  ( n  =  m  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
194193cbvmptv 4750 . . . . . 6  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( m  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
19534fveq2d 6195 . . . . . . 7  |-  ( m  e.  NN  ->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) `  m
) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
196195mpteq2ia 4740 . . . . . 6  |-  ( m  e.  NN  |->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )  =  ( m  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
197194, 196eqtr4i 2647 . . . . 5  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( m  e.  NN  |->  ( S.2 `  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )
198197rneqi 5352 . . . 4  |-  ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  =  ran  ( m  e.  NN  |->  ( S.2 `  (
( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) )
199198supeq1i 8353 . . 3  |-  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  sup ( ran  (
m  e.  NN  |->  ( S.2 `  ( ( n  e.  NN  |->  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) `  m ) ) ) ,  RR* ,  <  )
20042, 105, 114, 158, 192, 199itg2mono 23520 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) ) )  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  ) )
201 eqid 2622 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
20227, 201, 170fvmpt 6282 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
203202adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
204166adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  <_  ( F `  x ) )
205203, 204eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  <_  ( F `  x ) )
206205ralrimiva 2966 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  A. m  e.  NN  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) )
2073a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  _V )
208207, 201fmptd 6385 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : NN --> _V )
209 ffn 6045 . . . . . . . . . 10  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : NN --> _V  ->  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN )
210208, 209syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  Fn  NN )
211 breq1 4656 . . . . . . . . . 10  |-  ( w  =  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  ->  ( w  <_ 
( F `  x
)  <->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) ) )
212211ralrn 6362 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN  ->  ( A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  <_  ( F `  x ) ) )
213210, 212syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) w  <_  ( F `  x )  <->  A. m  e.  NN  (
( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) `  m
)  <_  ( F `  x ) ) )
214206, 213mpbird 247 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x ) )
215117adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( F `  x )  e.  RR )
216 0re 10040 . . . . . . . . . . 11  |-  0  e.  RR
217 ifcl 4130 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  e.  RR  /\  0  e.  RR )  ->  if ( ( F `
 x )  <_  n ,  ( F `  x ) ,  0 )  e.  RR )
218215, 216, 217sylancl 694 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  RR )
219218, 201fmptd 6385 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : NN --> RR )
220 frn 6053 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : NN --> RR  ->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) 
C_  RR )
221219, 220syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  C_  RR )
222 1nn 11031 . . . . . . . . . 10  |-  1  e.  NN
223201, 218dmmptd 6024 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  dom  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  NN )
224222, 223syl5eleqr 2708 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  1  e. 
dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
225 n0i 3920 . . . . . . . . . 10  |-  ( 1  e.  dom  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  ->  -.  dom  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/) )
226 dm0rn0 5342 . . . . . . . . . . 11  |-  ( dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/)  <->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/) )
227226necon3bbii 2841 . . . . . . . . . 10  |-  ( -. 
dom  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  (/)  <->  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/) )
228225, 227sylib 208 . . . . . . . . 9  |-  ( 1  e.  dom  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  ->  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =/=  (/) )
229224, 228syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/) )
230 breq2 4657 . . . . . . . . . . 11  |-  ( z  =  ( F `  x )  ->  (
w  <_  z  <->  w  <_  ( F `  x ) ) )
231230ralbidv 2986 . . . . . . . . . 10  |-  ( z  =  ( F `  x )  ->  ( A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
z  <->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) ) )
232231rspcev 3309 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  RR  /\  A. w  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) )  ->  E. z  e.  RR  A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )
233117, 214, 232syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  E. z  e.  RR  A. w  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )
234 suprleub 10989 . . . . . . . 8  |-  ( ( ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  C_  RR  /\  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  /\  ( F `  x
)  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  <->  A. w  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_ 
( F `  x
) ) )
235221, 229, 233, 117, 234syl31anc 1329 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  <->  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  ( F `  x ) ) )
236214, 235mpbird 247 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )
)
237 arch 11289 . . . . . . . . 9  |-  ( ( F `  x )  e.  RR  ->  E. m  e.  NN  ( F `  x )  <  m
)
238117, 237syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  E. m  e.  NN  ( F `  x )  <  m
)
239202ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  =  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) )
240 ltle 10126 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  e.  RR  /\  m  e.  RR )  ->  ( ( F `  x )  <  m  ->  ( F `  x
)  <_  m )
)
241117, 48, 240syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  m  e.  NN )  ->  (
( F `  x
)  <  m  ->  ( F `  x )  <_  m ) )
242241impr 649 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( F `  x )  <_  m
)
243242iftrued 4094 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  ( F `  x
) )
244239, 243eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  =  ( F `  x ) )
245210adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN )
246 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  m  e.  NN )
247 fnfvelrn 6356 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  Fn  NN  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
248245, 246, 247syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) `  m )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) )
249244, 248eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
m  e.  NN  /\  ( F `  x )  <  m ) )  ->  ( F `  x )  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
250238, 249rexlimddv 3035 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )
251 suprub 10984 . . . . . . 7  |-  ( ( ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  C_  RR  /\  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  /\  ( F `  x
)  e.  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  -> 
( F `  x
)  <_  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) )
252221, 229, 233, 250, 251syl31anc 1329 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  <_  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )
253 suprcl 10983 . . . . . . . 8  |-  ( ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) 
C_  RR  /\  ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) w  <_  z )  ->  sup ( ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  e.  RR )
254221, 229, 233, 253syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  e.  RR )
255254, 117letri3d 10179 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  )  =  ( F `
 x )  <->  ( sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  <_  ( F `  x )  /\  ( F `  x )  <_  sup ( ran  (
n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  ) ) ) )
256236, 252, 255mpbir2and 957 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ,  RR ,  <  )  =  ( F `  x ) )
257256mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )  =  ( x  e.  RR  |->  ( F `  x ) ) )
258257, 172eqtr4d 2659 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) )  =  F )
259258fveq2d 6195 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ,  RR ,  <  ) ) )  =  ( S.2 `  F
) )
260200, 259eqtr3d 2658 1  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oRcofr 6896   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   (,)cioo 12175   [,)cico 12177   volcvol 23232  MblFncmbf 23383   S.2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390
This theorem is referenced by:  itg2cn  23530
  Copyright terms: Public domain W3C validator