MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgitg1 Structured version   Visualization version   Unicode version

Theorem itgitg1 23575
Description: Transfer an integral using  S.1 to an equivalent integral using  S.. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itgitg1  |-  ( F  e.  dom  S.1  ->  S. RR ( F `  x )  _d x  =  ( S.1 `  F
) )
Distinct variable group:    x, F

Proof of Theorem itgitg1
StepHypRef Expression
1 i1ff 23443 . . . 4  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
21ffvelrnda 6359 . . 3  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
31feqmptd 6249 . . . 4  |-  ( F  e.  dom  S.1  ->  F  =  ( x  e.  RR  |->  ( F `  x ) ) )
4 i1fibl 23574 . . . 4  |-  ( F  e.  dom  S.1  ->  F  e.  L^1 )
53, 4eqeltrrd 2702 . . 3  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  ( F `  x ) )  e.  L^1 )
62, 5itgreval 23563 . 2  |-  ( F  e.  dom  S.1  ->  S. RR ( F `  x )  _d x  =  ( S. RR if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  _d x  -  S. RR if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  _d x ) )
7 0re 10040 . . . . . . 7  |-  0  e.  RR
8 ifcl 4130 . . . . . . 7  |-  ( ( ( F `  x
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  e.  RR )
92, 7, 8sylancl 694 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  e.  RR )
10 max1 12016 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( F `  x )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
117, 2, 10sylancr 695 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  0  <_  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
12 id 22 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  F  e.  dom  S.1 )
133, 12eqeltrrd 2702 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  ( F `  x ) )  e.  dom  S.1 )
1413i1fposd 23474 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  dom  S.1 )
15 i1fibl 23574 . . . . . . 7  |-  ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  dom  S.1 
->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  L^1 )
1614, 15syl 17 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  L^1 )
179, 11, 16itgitg2 23573 . . . . 5  |-  ( F  e.  dom  S.1  ->  S. RR if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
1811ralrimiva 2966 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  A. x  e.  RR  0  <_  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
19 reex 10027 . . . . . . . . . 10  |-  RR  e.  _V
2019a1i 11 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  RR  e.  _V )
217a1i 11 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  0  e.  RR )
22 fconstmpt 5163 . . . . . . . . . 10  |-  ( RR 
X.  { 0 } )  =  ( x  e.  RR  |->  0 )
2322a1i 11 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( RR  X.  { 0 } )  =  ( x  e.  RR  |->  0 ) )
24 eqidd 2623 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
2520, 21, 9, 23, 24ofrfval2 6915 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  {
0 } )  oR  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  <->  A. x  e.  RR  0  <_  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
2618, 25mpbird 247 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( RR  X.  { 0 } )  oR  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
27 ax-resscn 9993 . . . . . . . . 9  |-  RR  C_  CC
2827a1i 11 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  RR  C_  CC )
29 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
309, 29fmptd 6385 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) : RR --> RR )
31 ffn 6045 . . . . . . . . 9  |-  ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) : RR --> RR  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  Fn  RR )
3230, 31syl 17 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  Fn  RR )
3328, 320pledm 23440 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( 0p  oR  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  <-> 
( RR  X.  {
0 } )  oR  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
3426, 33mpbird 247 . . . . . 6  |-  ( F  e.  dom  S.1  ->  0p  oR  <_ 
( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
35 itg2itg1 23503 . . . . . 6  |-  ( ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  dom  S.1 
/\  0p  oR  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  =  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
3614, 34, 35syl2anc 693 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  =  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
3717, 36eqtrd 2656 . . . 4  |-  ( F  e.  dom  S.1  ->  S. RR if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  _d x  =  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
382renegcld 10457 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  -u ( F `  x )  e.  RR )
39 ifcl 4130 . . . . . . 7  |-  ( (
-u ( F `  x )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  e.  RR )
4038, 7, 39sylancl 694 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  e.  RR )
41 max1 12016 . . . . . . 7  |-  ( ( 0  e.  RR  /\  -u ( F `  x
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )
427, 38, 41sylancr 695 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )
43 neg1rr 11125 . . . . . . . . . . . 12  |-  -u 1  e.  RR
4443a1i 11 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  -u 1  e.  RR )
45 fconstmpt 5163 . . . . . . . . . . . 12  |-  ( RR 
X.  { -u 1 } )  =  ( x  e.  RR  |->  -u
1 )
4645a1i 11 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  ( RR  X.  { -u
1 } )  =  ( x  e.  RR  |->  -u 1 ) )
4720, 44, 2, 46, 3offval2 6914 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  { -u 1 } )  oF  x.  F )  =  ( x  e.  RR  |->  ( -u 1  x.  ( F `  x
) ) ) )
482recnd 10068 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( F `  x )  e.  CC )
4948mulm1d 10482 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( -u 1  x.  ( F `  x
) )  =  -u ( F `  x ) )
5049mpteq2dva 4744 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  (
-u 1  x.  ( F `  x )
) )  =  ( x  e.  RR  |->  -u ( F `  x ) ) )
5147, 50eqtrd 2656 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  { -u 1 } )  oF  x.  F )  =  ( x  e.  RR  |->  -u ( F `  x ) ) )
5243a1i 11 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  -u
1  e.  RR )
5312, 52i1fmulc 23470 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  { -u 1 } )  oF  x.  F )  e.  dom  S.1 )
5451, 53eqeltrrd 2702 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  -u ( F `  x ) )  e.  dom  S.1 )
5554i1fposd 23474 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  dom  S.1 )
56 i1fibl 23574 . . . . . . 7  |-  ( ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  dom  S.1 
->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  L^1 )
5755, 56syl 17 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  L^1 )
5840, 42, 57itgitg2 23573 . . . . 5  |-  ( F  e.  dom  S.1  ->  S. RR if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
5942ralrimiva 2966 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  A. x  e.  RR  0  <_  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )
60 eqidd 2623 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )
6120, 21, 40, 23, 60ofrfval2 6915 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  {
0 } )  oR  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  <->  A. x  e.  RR  0  <_  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )
6259, 61mpbird 247 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( RR  X.  { 0 } )  oR  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )
63 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )
6440, 63fmptd 6385 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) : RR --> RR )
65 ffn 6045 . . . . . . . . 9  |-  ( ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) : RR --> RR  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  Fn  RR )
6664, 65syl 17 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  Fn  RR )
6728, 660pledm 23440 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( 0p  oR  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  <-> 
( RR  X.  {
0 } )  oR  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
6862, 67mpbird 247 . . . . . 6  |-  ( F  e.  dom  S.1  ->  0p  oR  <_ 
( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )
69 itg2itg1 23503 . . . . . 6  |-  ( ( ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  dom  S.1 
/\  0p  oR  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  =  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
7055, 68, 69syl2anc 693 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) )  =  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
7158, 70eqtrd 2656 . . . 4  |-  ( F  e.  dom  S.1  ->  S. RR if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  _d x  =  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
7237, 71oveq12d 6668 . . 3  |-  ( F  e.  dom  S.1  ->  ( S. RR if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  _d x  -  S. RR if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  _d x )  =  ( ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  -  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) ) ) )
73 itg1sub 23476 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  dom  S.1 
/\  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  dom  S.1 )  ->  ( S.1 `  (
( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  oF  -  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )  =  ( ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  -  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) ) ) )
7414, 55, 73syl2anc 693 . . 3  |-  ( F  e.  dom  S.1  ->  ( S.1 `  ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  oF  -  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )  =  ( ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  -  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) ) ) )
7572, 74eqtr4d 2659 . 2  |-  ( F  e.  dom  S.1  ->  ( S. RR if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  _d x  -  S. RR if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  _d x )  =  ( S.1 `  (
( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  oF  -  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) ) )
76 max0sub 12027 . . . . . 6  |-  ( ( F `  x )  e.  RR  ->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( F `  x ) )
772, 76syl 17 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  =  ( F `  x ) )
7877mpteq2dva 4744 . . . 4  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  ( if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  -  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( F `  x ) ) )
7920, 9, 40, 24, 60offval2 6914 . . . 4  |-  ( F  e.  dom  S.1  ->  ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  oF  -  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) ) )
8078, 79, 33eqtr4d 2666 . . 3  |-  ( F  e.  dom  S.1  ->  ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  oF  -  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  =  F )
8180fveq2d 6195 . 2  |-  ( F  e.  dom  S.1  ->  ( S.1 `  ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  oF  -  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )  =  ( S.1 `  F ) )
826, 75, 813eqtrd 2660 1  |-  ( F  e.  dom  S.1  ->  S. RR ( F `  x )  _d x  =  ( S.1 `  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267   S.1citg1 23384   S.2citg2 23385   L^1cibl 23386   S.citg 23387   0pc0p 23436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator