MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibladdlem Structured version   Visualization version   Unicode version

Theorem ibladdlem 23586
Description: Lemma for ibladd 23587. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
ibladd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
ibladd.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
ibladd.3  |-  ( (
ph  /\  x  e.  A )  ->  D  =  ( B  +  C ) )
ibladd.4  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
ibladd.5  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
ibladd.6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
ibladd.7  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
Assertion
Ref Expression
ibladdlem  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    D( x)

Proof of Theorem ibladdlem
StepHypRef Expression
1 ifan 4134 . . . 4  |-  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )
2 ibladd.3 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  D  =  ( B  +  C ) )
3 ibladd.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
4 ibladd.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
53, 4readdcld 10069 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
62, 5eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  RR )
7 0re 10040 . . . . . . . . 9  |-  0  e.  RR
8 ifcl 4130 . . . . . . . . 9  |-  ( ( D  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  D ,  D , 
0 )  e.  RR )
96, 7, 8sylancl 694 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  RR )
109rexrd 10089 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  RR* )
11 max1 12016 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  D  e.  RR )  ->  0  <_  if (
0  <_  D ,  D ,  0 ) )
127, 6, 11sylancr 695 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  D ,  D , 
0 ) )
13 elxrge0 12281 . . . . . . 7  |-  ( if ( 0  <_  D ,  D ,  0 )  e.  ( 0 [,] +oo )  <->  ( if ( 0  <_  D ,  D ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_  D ,  D , 
0 ) ) )
1410, 12, 13sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  ( 0 [,] +oo ) )
15 0e0iccpnf 12283 . . . . . . 7  |-  0  e.  ( 0 [,] +oo )
1615a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,] +oo ) )
1714, 16ifclda 4120 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
1817adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
191, 18syl5eqel 2705 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  e.  ( 0 [,] +oo ) )
20 eqid 2622 . . 3  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )
2119, 20fmptd 6385 . 2  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,] +oo ) )
22 reex 10027 . . . . . . . 8  |-  RR  e.  _V
2322a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
24 ifan 4134 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )
25 ifcl 4130 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
263, 7, 25sylancl 694 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
277a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  RR )
2826, 27ifclda 4120 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  e.  RR )
2924, 28syl5eqel 2705 . . . . . . . 8  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
3029adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
31 ifan 4134 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )
32 ifcl 4130 . . . . . . . . . . 11  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
334, 7, 32sylancl 694 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
3433, 27ifclda 4120 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )  e.  RR )
3531, 34syl5eqel 2705 . . . . . . . 8  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
3635adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
37 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )
38 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
3923, 30, 36, 37, 38offval2 6914 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )
40 iftrue 4092 . . . . . . . . 9  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
41 ibar 525 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
0  <_  B  <->  ( x  e.  A  /\  0  <_  B ) ) )
4241ifbid 4108 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( 0  <_  B ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
43 ibar 525 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
0  <_  C  <->  ( x  e.  A  /\  0  <_  C ) ) )
4443ifbid 4108 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( 0  <_  C ,  C ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
4542, 44oveq12d 6668 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  =  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
4640, 45eqtr2d 2657 . . . . . . . 8  |-  ( x  e.  A  ->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
47 00id 10211 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
48 simpl 473 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  B )  ->  x  e.  A )
4948con3i 150 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  B ) )
5049iffalsed 4097 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
51 simpl 473 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  C )  ->  x  e.  A )
5251con3i 150 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  C ) )
5352iffalsed 4097 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  0 )
5450, 53oveq12d 6668 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( 0  +  0 ) )
55 iffalse 4095 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  0 )
5647, 54, 553eqtr4a 2682 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
5746, 56pm2.61i 176 . . . . . . 7  |-  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )
5857mpteq2i 4741 . . . . . 6  |-  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
5939, 58syl6eq 2672 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) )
6059fveq2d 6195 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) ) )
61 ibladd.4 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
6261, 3mbfdm2 23405 . . . . . . 7  |-  ( ph  ->  A  e.  dom  vol )
63 mblss 23299 . . . . . . 7  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
6462, 63syl 17 . . . . . 6  |-  ( ph  ->  A  C_  RR )
65 rembl 23308 . . . . . . 7  |-  RR  e.  dom  vol
6665a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  dom  vol )
6729adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
68 eldifn 3733 . . . . . . . . 9  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
6968adantl 482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
7069intnanrd 963 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  (
x  e.  A  /\  0  <_  B ) )
7170iffalsed 4097 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
7242mpteq2ia 4740 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
733, 61mbfpos 23418 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
7472, 73syl5eqelr 2706 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  e. MblFn )
7564, 66, 67, 71, 74mbfss 23413 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  e. MblFn )
76 max1 12016 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
777, 3, 76sylancr 695 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
78 elrege0 12278 . . . . . . . . . 10  |-  ( if ( 0  <_  B ,  B ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  B ,  B , 
0 ) ) )
7926, 77, 78sylanbrc 698 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  ( 0 [,) +oo ) )
80 0e0icopnf 12282 . . . . . . . . . 10  |-  0  e.  ( 0 [,) +oo )
8180a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
8279, 81ifclda 4120 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  e.  ( 0 [,) +oo ) )
8324, 82syl5eqel 2705 . . . . . . 7  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,) +oo ) )
8483adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,) +oo ) )
85 eqid 2622 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
8684, 85fmptd 6385 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) : RR --> ( 0 [,) +oo ) )
87 ibladd.6 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
8835adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
8969, 53syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  0 )
9044mpteq2ia 4740 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  C ,  C ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
91 ibladd.5 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
924, 91mbfpos 23418 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  C ,  C , 
0 ) )  e. MblFn
)
9390, 92syl5eqelr 2706 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  e. MblFn )
9464, 66, 88, 89, 93mbfss 23413 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  e. MblFn )
95 max1 12016 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
967, 4, 95sylancr 695 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
97 elrege0 12278 . . . . . . . . . 10  |-  ( if ( 0  <_  C ,  C ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  C ,  C ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  C ,  C , 
0 ) ) )
9833, 96, 97sylanbrc 698 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  ( 0 [,) +oo ) )
9998, 81ifclda 4120 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )  e.  ( 0 [,) +oo ) )
10031, 99syl5eqel 2705 . . . . . . 7  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,) +oo ) )
101100adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,) +oo ) )
102 eqid 2622 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
103101, 102fmptd 6385 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) : RR --> ( 0 [,) +oo ) )
104 ibladd.7 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
10575, 86, 87, 94, 103, 104itg2add 23526 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) ) )
10660, 105eqtr3d 2658 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) ) )
10787, 104readdcld 10069 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  e.  RR )
108106, 107eqeltrd 2701 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  e.  RR )
10926, 33readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR )
110109rexrd 10089 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR* )
11126, 33, 77, 96addge0d 10603 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
112 elxrge0 12281 . . . . . . 7  |-  ( ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  ( 0 [,] +oo )  <->  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR*  /\  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ) )
113110, 111, 112sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  ( 0 [,] +oo ) )
114113, 16ifclda 4120 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  e.  ( 0 [,] +oo ) )
115114adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 )  e.  ( 0 [,] +oo )
)
116 eqid 2622 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
117115, 116fmptd 6385 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
118 max2 12018 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  B  <_  if (
0  <_  B ,  B ,  0 ) )
1197, 3, 118sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  if ( 0  <_  B ,  B , 
0 ) )
120 max2 12018 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  C  <_  if (
0  <_  C ,  C ,  0 ) )
1217, 4, 120sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  C  <_  if ( 0  <_  C ,  C , 
0 ) )
1223, 4, 26, 33, 119, 121le2addd 10646 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
1232, 122eqbrtrd 4675 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
124 breq1 4656 . . . . . . . . . . 11  |-  ( D  =  if ( 0  <_  D ,  D ,  0 )  -> 
( D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  <-> 
if ( 0  <_  D ,  D , 
0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
125 breq1 4656 . . . . . . . . . . 11  |-  ( 0  =  if ( 0  <_  D ,  D ,  0 )  -> 
( 0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  <-> 
if ( 0  <_  D ,  D , 
0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
126124, 125ifboth 4124 . . . . . . . . . 10  |-  ( ( D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  /\  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  ->  if (
0  <_  D ,  D ,  0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
127123, 111, 126syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
128 iftrue 4092 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  if ( 0  <_  D ,  D ,  0 ) )
129128adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  if ( 0  <_  D ,  D ,  0 ) )
13040adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
131127, 129, 1303brtr4d 4685 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  <_  if (
x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
132131ex 450 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
133 0le0 11110 . . . . . . . . 9  |-  0  <_  0
134133a1i 11 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
135 iffalse 4095 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  0 )
136134, 135, 553brtr4d 4685 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  <_  if (
x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
137132, 136pm2.61d1 171 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
1381, 137syl5eqbr 4688 . . . . 5  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
139138ralrimivw 2967 . . . 4  |-  ( ph  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
140 eqidd 2623 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )
141 eqidd 2623 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
14223, 19, 115, 140, 141ofrfval2 6915 . . . 4  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  oR  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
143139, 142mpbird 247 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
144 itg2le 23506 . . 3  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  oR  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )
14521, 117, 143, 144syl3anc 1326 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )
146 itg2lecl 23505 . 2  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
14721, 108, 145, 146syl3anc 1326 1  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   [,)cico 12177   [,]cicc 12178   volcvol 23232  MblFncmbf 23383   S.2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-0p 23437
This theorem is referenced by:  ibladd  23587
  Copyright terms: Public domain W3C validator