MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc11 Structured version   Visualization version   Unicode version

Theorem pc11 15584
Description: The prime count function, viewed as a function from  NN to  ( NN  ^m  Prime ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pc11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  =  B  <->  A. p  e.  Prime  ( p  pCnt  A )  =  ( p  pCnt  B ) ) )
Distinct variable groups:    A, p    B, p

Proof of Theorem pc11
StepHypRef Expression
1 oveq2 6658 . . 3  |-  ( A  =  B  ->  (
p  pCnt  A )  =  ( p  pCnt  B ) )
21ralrimivw 2967 . 2  |-  ( A  =  B  ->  A. p  e.  Prime  ( p  pCnt  A )  =  ( p 
pCnt  B ) )
3 nn0z 11400 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
4 nn0z 11400 . . . 4  |-  ( B  e.  NN0  ->  B  e.  ZZ )
5 zq 11794 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  A  e.  QQ )
6 pcxcl 15565 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  A  e.  QQ )  ->  (
p  pCnt  A )  e.  RR* )
75, 6sylan2 491 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  ZZ )  ->  (
p  pCnt  A )  e.  RR* )
8 zq 11794 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  B  e.  QQ )
9 pcxcl 15565 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  B  e.  QQ )  ->  (
p  pCnt  B )  e.  RR* )
108, 9sylan2 491 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  B  e.  ZZ )  ->  (
p  pCnt  B )  e.  RR* )
117, 10anim12dan 882 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  -> 
( ( p  pCnt  A )  e.  RR*  /\  (
p  pCnt  B )  e.  RR* ) )
12 xrletri3 11985 . . . . . . . . 9  |-  ( ( ( p  pCnt  A
)  e.  RR*  /\  (
p  pCnt  B )  e.  RR* )  ->  (
( p  pCnt  A
)  =  ( p 
pCnt  B )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  B
)  /\  ( p  pCnt  B )  <_  (
p  pCnt  A )
) ) )
1311, 12syl 17 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  -> 
( ( p  pCnt  A )  =  ( p 
pCnt  B )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  B
)  /\  ( p  pCnt  B )  <_  (
p  pCnt  A )
) ) )
1413ancoms 469 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  A )  =  ( p  pCnt  B )  <->  ( ( p  pCnt  A
)  <_  ( p  pCnt  B )  /\  (
p  pCnt  B )  <_  ( p  pCnt  A
) ) ) )
1514ralbidva 2985 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  A
)  =  ( p 
pCnt  B )  <->  A. p  e.  Prime  ( ( p 
pCnt  A )  <_  (
p  pCnt  B )  /\  ( p  pCnt  B
)  <_  ( p  pCnt  A ) ) ) )
16 r19.26 3064 . . . . . 6  |-  ( A. p  e.  Prime  ( ( p  pCnt  A )  <_  ( p  pCnt  B
)  /\  ( p  pCnt  B )  <_  (
p  pCnt  A )
)  <->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B )  /\  A. p  e.  Prime  ( p 
pCnt  B )  <_  (
p  pCnt  A )
) )
1715, 16syl6bb 276 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  A
)  =  ( p 
pCnt  B )  <->  ( A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )  /\  A. p  e.  Prime  ( p  pCnt  B )  <_  ( p  pCnt  A
) ) ) )
18 pc2dvds 15583 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
19 pc2dvds 15583 . . . . . . 7  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  ||  A  <->  A. p  e.  Prime  (
p  pCnt  B )  <_  ( p  pCnt  A
) ) )
2019ancoms 469 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  ||  A  <->  A. p  e.  Prime  (
p  pCnt  B )  <_  ( p  pCnt  A
) ) )
2118, 20anbi12d 747 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  ||  B  /\  B  ||  A
)  <->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B )  /\  A. p  e.  Prime  ( p 
pCnt  B )  <_  (
p  pCnt  A )
) ) )
2217, 21bitr4d 271 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  A
)  =  ( p 
pCnt  B )  <->  ( A  ||  B  /\  B  ||  A ) ) )
233, 4, 22syl2an 494 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A. p  e. 
Prime  ( p  pCnt  A
)  =  ( p 
pCnt  B )  <->  ( A  ||  B  /\  B  ||  A ) ) )
24 dvdseq 15036 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( A  ||  B  /\  B  ||  A ) )  ->  A  =  B )
2524ex 450 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( ( A  ||  B  /\  B  ||  A
)  ->  A  =  B ) )
2623, 25sylbid 230 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A. p  e. 
Prime  ( p  pCnt  A
)  =  ( p 
pCnt  B )  ->  A  =  B ) )
272, 26impbid2 216 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  =  B  <->  A. p  e.  Prime  ( p  pCnt  A )  =  ( p  pCnt  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653  (class class class)co 6650   RR*cxr 10073    <_ cle 10075   NN0cn0 11292   ZZcz 11377   QQcq 11788    || cdvds 14983   Primecprime 15385    pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  pcprod  15599  prmreclem2  15621  1arith  15631  isppw2  24841  sqf11  24865  bposlem3  25011
  Copyright terms: Public domain W3C validator