MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcadd2 Structured version   Visualization version   Unicode version

Theorem pcadd2 15594
Description: The inequality of pcadd 15593 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
pcadd2.1  |-  ( ph  ->  P  e.  Prime )
pcadd2.2  |-  ( ph  ->  A  e.  QQ )
pcadd2.3  |-  ( ph  ->  B  e.  QQ )
pcadd2.4  |-  ( ph  ->  ( P  pCnt  A
)  <  ( P  pCnt  B ) )
Assertion
Ref Expression
pcadd2  |-  ( ph  ->  ( P  pCnt  A
)  =  ( P 
pCnt  ( A  +  B ) ) )

Proof of Theorem pcadd2
StepHypRef Expression
1 pcadd2.1 . . 3  |-  ( ph  ->  P  e.  Prime )
2 pcadd2.2 . . 3  |-  ( ph  ->  A  e.  QQ )
3 pcadd2.3 . . 3  |-  ( ph  ->  B  e.  QQ )
4 pcadd2.4 . . . 4  |-  ( ph  ->  ( P  pCnt  A
)  <  ( P  pCnt  B ) )
5 pcxcl 15565 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
61, 2, 5syl2anc 693 . . . . 5  |-  ( ph  ->  ( P  pCnt  A
)  e.  RR* )
7 pcxcl 15565 . . . . . 6  |-  ( ( P  e.  Prime  /\  B  e.  QQ )  ->  ( P  pCnt  B )  e. 
RR* )
81, 3, 7syl2anc 693 . . . . 5  |-  ( ph  ->  ( P  pCnt  B
)  e.  RR* )
9 xrltle 11982 . . . . 5  |-  ( ( ( P  pCnt  A
)  e.  RR*  /\  ( P  pCnt  B )  e. 
RR* )  ->  (
( P  pCnt  A
)  <  ( P  pCnt  B )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  B
) ) )
106, 8, 9syl2anc 693 . . . 4  |-  ( ph  ->  ( ( P  pCnt  A )  <  ( P 
pCnt  B )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  B
) ) )
114, 10mpd 15 . . 3  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
121, 2, 3, 11pcadd 15593 . 2  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
13 qaddcl 11804 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )
142, 3, 13syl2anc 693 . . . 4  |-  ( ph  ->  ( A  +  B
)  e.  QQ )
15 qnegcl 11805 . . . . 5  |-  ( B  e.  QQ  ->  -u B  e.  QQ )
163, 15syl 17 . . . 4  |-  ( ph  -> 
-u B  e.  QQ )
17 xrltnle 10105 . . . . . . . . . 10  |-  ( ( ( P  pCnt  A
)  e.  RR*  /\  ( P  pCnt  B )  e. 
RR* )  ->  (
( P  pCnt  A
)  <  ( P  pCnt  B )  <->  -.  ( P  pCnt  B )  <_ 
( P  pCnt  A
) ) )
186, 8, 17syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( P  pCnt  A )  <  ( P 
pCnt  B )  <->  -.  ( P  pCnt  B )  <_ 
( P  pCnt  A
) ) )
194, 18mpbid 222 . . . . . . . 8  |-  ( ph  ->  -.  ( P  pCnt  B )  <_  ( P  pCnt  A ) )
201adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  P  e.  Prime )
2116adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  -u B  e.  QQ )
2214adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  ( A  +  B )  e.  QQ )
23 pcneg 15578 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  B  e.  QQ )  ->  ( P  pCnt  -u B )  =  ( P  pCnt  B
) )
241, 3, 23syl2anc 693 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  -u B
)  =  ( P 
pCnt  B ) )
2524breq1d 4663 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P  pCnt  -u B )  <_  ( P  pCnt  ( A  +  B ) )  <->  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) ) )
2625biimpar 502 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  ( P  pCnt  -u B )  <_  ( P  pCnt  ( A  +  B ) ) )
2720, 21, 22, 26pcadd 15593 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  ( P  pCnt  -u B )  <_  ( P  pCnt  ( -u B  +  ( A  +  B ) ) ) )
2827ex 450 . . . . . . . . 9  |-  ( ph  ->  ( ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B
) )  ->  ( P  pCnt  -u B )  <_ 
( P  pCnt  ( -u B  +  ( A  +  B ) ) ) ) )
29 qcn 11802 . . . . . . . . . . . . . . 15  |-  ( B  e.  QQ  ->  B  e.  CC )
303, 29syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  CC )
3130negcld 10379 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u B  e.  CC )
32 qcn 11802 . . . . . . . . . . . . . 14  |-  ( A  e.  QQ  ->  A  e.  CC )
332, 32syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  CC )
3431, 33, 30add12d 10262 . . . . . . . . . . . 12  |-  ( ph  ->  ( -u B  +  ( A  +  B
) )  =  ( A  +  ( -u B  +  B )
) )
3531, 30addcomd 10238 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -u B  +  B )  =  ( B  +  -u B
) )
3630negidd 10382 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  +  -u B )  =  0 )
3735, 36eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -u B  +  B )  =  0 )
3837oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  (
-u B  +  B
) )  =  ( A  +  0 ) )
3933addid1d 10236 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  0 )  =  A )
4034, 38, 393eqtrd 2660 . . . . . . . . . . 11  |-  ( ph  ->  ( -u B  +  ( A  +  B
) )  =  A )
4140oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( -u B  +  ( A  +  B ) ) )  =  ( P 
pCnt  A ) )
4224, 41breq12d 4666 . . . . . . . . 9  |-  ( ph  ->  ( ( P  pCnt  -u B )  <_  ( P  pCnt  ( -u B  +  ( A  +  B ) ) )  <-> 
( P  pCnt  B
)  <_  ( P  pCnt  A ) ) )
4328, 42sylibd 229 . . . . . . . 8  |-  ( ph  ->  ( ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B
) )  ->  ( P  pCnt  B )  <_ 
( P  pCnt  A
) ) )
4419, 43mtod 189 . . . . . . 7  |-  ( ph  ->  -.  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B
) ) )
45 pcxcl 15565 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  +  B )  e.  QQ )  ->  ( P  pCnt  ( A  +  B ) )  e. 
RR* )
461, 14, 45syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  e.  RR* )
47 xrltnle 10105 . . . . . . . 8  |-  ( ( ( P  pCnt  ( A  +  B )
)  e.  RR*  /\  ( P  pCnt  B )  e. 
RR* )  ->  (
( P  pCnt  ( A  +  B )
)  <  ( P  pCnt  B )  <->  -.  ( P  pCnt  B )  <_ 
( P  pCnt  ( A  +  B )
) ) )
4846, 8, 47syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( P  pCnt  ( A  +  B ) )  <  ( P 
pCnt  B )  <->  -.  ( P  pCnt  B )  <_ 
( P  pCnt  ( A  +  B )
) ) )
4944, 48mpbird 247 . . . . . 6  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <  ( P  pCnt  B ) )
50 xrltle 11982 . . . . . . 7  |-  ( ( ( P  pCnt  ( A  +  B )
)  e.  RR*  /\  ( P  pCnt  B )  e. 
RR* )  ->  (
( P  pCnt  ( A  +  B )
)  <  ( P  pCnt  B )  ->  ( P  pCnt  ( A  +  B ) )  <_ 
( P  pCnt  B
) ) )
5146, 8, 50syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( P  pCnt  ( A  +  B ) )  <  ( P 
pCnt  B )  ->  ( P  pCnt  ( A  +  B ) )  <_ 
( P  pCnt  B
) ) )
5249, 51mpd 15 . . . . 5  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <_  ( P  pCnt  B ) )
5352, 24breqtrrd 4681 . . . 4  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <_  ( P  pCnt  -u B ) )
541, 14, 16, 53pcadd 15593 . . 3  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <_  ( P  pCnt  ( ( A  +  B )  +  -u B ) ) )
5533, 30, 31addassd 10062 . . . . 5  |-  ( ph  ->  ( ( A  +  B )  +  -u B )  =  ( A  +  ( B  +  -u B ) ) )
5636oveq2d 6666 . . . . 5  |-  ( ph  ->  ( A  +  ( B  +  -u B
) )  =  ( A  +  0 ) )
5755, 56, 393eqtrd 2660 . . . 4  |-  ( ph  ->  ( ( A  +  B )  +  -u B )  =  A )
5857oveq2d 6666 . . 3  |-  ( ph  ->  ( P  pCnt  (
( A  +  B
)  +  -u B
) )  =  ( P  pCnt  A )
)
5954, 58breqtrd 4679 . 2  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <_  ( P  pCnt  A ) )
60 xrletri3 11985 . . 3  |-  ( ( ( P  pCnt  A
)  e.  RR*  /\  ( P  pCnt  ( A  +  B ) )  e. 
RR* )  ->  (
( P  pCnt  A
)  =  ( P 
pCnt  ( A  +  B ) )  <->  ( ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
)  /\  ( P  pCnt  ( A  +  B
) )  <_  ( P  pCnt  A ) ) ) )
616, 46, 60syl2anc 693 . 2  |-  ( ph  ->  ( ( P  pCnt  A )  =  ( P 
pCnt  ( A  +  B ) )  <->  ( ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
)  /\  ( P  pCnt  ( A  +  B
) )  <_  ( P  pCnt  A ) ) ) )
6212, 59, 61mpbir2and 957 1  |-  ( ph  ->  ( P  pCnt  A
)  =  ( P 
pCnt  ( A  +  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   -ucneg 10267   QQcq 11788   Primecprime 15385    pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  sylow1lem1  18013
  Copyright terms: Public domain W3C validator