MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcadd Structured version   Visualization version   Unicode version

Theorem pcadd 15593
Description: An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcadd.1  |-  ( ph  ->  P  e.  Prime )
pcadd.2  |-  ( ph  ->  A  e.  QQ )
pcadd.3  |-  ( ph  ->  B  e.  QQ )
pcadd.4  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
Assertion
Ref Expression
pcadd  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )

Proof of Theorem pcadd
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcadd.2 . . 3  |-  ( ph  ->  A  e.  QQ )
2 elq 11790 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
31, 2sylib 208 . 2  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y ) )
4 pcadd.3 . . 3  |-  ( ph  ->  B  e.  QQ )
5 elq 11790 . . 3  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
64, 5sylib 208 . 2  |-  ( ph  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
7 pcadd.1 . . . . . . . 8  |-  ( ph  ->  P  e.  Prime )
8 pcxcl 15565 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
97, 1, 8syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( P  pCnt  A
)  e.  RR* )
10 xrleid 11983 . . . . . . 7  |-  ( ( P  pCnt  A )  e.  RR*  ->  ( P  pCnt  A )  <_  ( P  pCnt  A ) )
119, 10syl 17 . . . . . 6  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  A ) )
1211adantr 481 . . . . 5  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  A
) )
13 oveq2 6658 . . . . . . 7  |-  ( B  =  0  ->  ( A  +  B )  =  ( A  + 
0 ) )
14 qcn 11802 . . . . . . . . 9  |-  ( A  e.  QQ  ->  A  e.  CC )
151, 14syl 17 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1615addid1d 10236 . . . . . . 7  |-  ( ph  ->  ( A  +  0 )  =  A )
1713, 16sylan9eqr 2678 . . . . . 6  |-  ( (
ph  /\  B  = 
0 )  ->  ( A  +  B )  =  A )
1817oveq2d 6666 . . . . 5  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  ( A  +  B ) )  =  ( P  pCnt  A
) )
1912, 18breqtrrd 4681 . . . 4  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) )
2019a1d 25 . . 3  |-  ( (
ph  /\  B  = 
0 )  ->  (
( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
21 reeanv 3107 . . . 4  |-  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  <->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) ) )
22 reeanv 3107 . . . . . 6  |-  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  <->  ( E. y  e.  NN  A  =  ( x  / 
y )  /\  E. w  e.  NN  B  =  ( z  /  w ) ) )
237ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  Prime )
24 prmnn 15388 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  NN )
2523, 24syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  NN )
26 simplrl 800 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  e.  ZZ )
27 simprrl 804 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =  ( x  /  y ) )
284ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  e.  QQ )
29 simpllr 799 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =/=  0 )
30 pcqcl 15561 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  Prime  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3123, 28, 29, 30syl12anc 1324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3231zred 11482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  RR )
33 ltpnf 11954 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  pCnt  B )  e.  RR  ->  ( P  pCnt  B )  < +oo )
34 rexr 10085 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  pCnt  B )  e.  RR  ->  ( P  pCnt  B )  e.  RR* )
35 pnfxr 10092 . . . . . . . . . . . . . . . . . . . . . . . 24  |- +oo  e.  RR*
36 xrltnle 10105 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( P  pCnt  B
)  e.  RR*  /\ +oo  e.  RR* )  ->  (
( P  pCnt  B
)  < +oo  <->  -. +oo  <_  ( P  pCnt  B )
) )
3734, 35, 36sylancl 694 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  pCnt  B )  e.  RR  ->  ( ( P  pCnt  B )  < +oo 
<->  -. +oo  <_  ( P  pCnt  B ) ) )
3833, 37mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  pCnt  B )  e.  RR  ->  -. +oo  <_  ( P  pCnt  B )
)
3932, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -. +oo  <_  ( P  pCnt  B ) )
40 pc0 15559 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
4123, 40syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  0
)  = +oo )
4241breq1d 4663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P  pCnt  0 )  <_  ( P  pCnt  B )  <-> +oo  <_  ( P  pCnt  B ) ) )
4339, 42mtbird 315 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  ( P  pCnt  0
)  <_  ( P  pCnt  B ) )
44 pcadd.4 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
4544ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
46 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =  0  ->  ( P  pCnt  A )  =  ( P  pCnt  0
) )
4746breq1d 4663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  =  0  ->  (
( P  pCnt  A
)  <_  ( P  pCnt  B )  <->  ( P  pCnt  0 )  <_  ( P  pCnt  B ) ) )
4845, 47syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  =  0  ->  ( P  pCnt  0 )  <_  ( P  pCnt  B ) ) )
4948necon3bd 2808 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( -.  ( P 
pCnt  0 )  <_ 
( P  pCnt  B
)  ->  A  =/=  0 ) )
5043, 49mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =/=  0 )
5127, 50eqnetrrd 2862 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  /  y
)  =/=  0 )
52 simprll 802 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  NN )
5352nncnd 11036 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  CC )
5452nnne0d 11065 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  =/=  0 )
5553, 54div0d 10800 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( 0  /  y
)  =  0 )
56 oveq1 6657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
5756eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
5855, 57syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  =  0  ->  ( x  / 
y )  =  0 ) )
5958necon3d 2815 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
y )  =/=  0  ->  x  =/=  0 ) )
6051, 59mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  =/=  0 )
61 pczcl 15553 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  NN0 )
6223, 26, 60, 61syl12anc 1324 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  x
)  e.  NN0 )
6325, 62nnexpcld 13030 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  NN )
6463nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  CC )
6564, 53mulcomd 10061 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  x
) )  x.  y
)  =  ( y  x.  ( P ^
( P  pCnt  x
) ) ) )
6665oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( ( P ^ ( P 
pCnt  x ) )  x.  y ) )  =  ( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( y  x.  ( P ^
( P  pCnt  x
) ) ) ) )
6726zcnd 11483 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  e.  CC )
6823, 52pccld 15555 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  y
)  e.  NN0 )
6925, 68nnexpcld 13030 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  NN )
7069nncnd 11036 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  CC )
7163nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  =/=  0 )
7269nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  =/=  0 )
7367, 64, 53, 70, 71, 72, 54divdivdivd 10848 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  /  ( y  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  x.  ( P ^
( P  pCnt  y
) ) )  / 
( ( P ^
( P  pCnt  x
) )  x.  y
) ) )
7427oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  =  ( P 
pCnt  ( x  / 
y ) ) )
75 pcdiv 15557 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7623, 26, 60, 52, 75syl121anc 1331 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7774, 76eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7877oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =  ( P ^
( ( P  pCnt  x )  -  ( P 
pCnt  y ) ) ) )
7925nncnd 11036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  CC )
8025nnne0d 11065 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  =/=  0 )
8168nn0zd 11480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  y
)  e.  ZZ )
8262nn0zd 11480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  x
)  e.  ZZ )
8379, 80, 81, 82expsubd 13019 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ (
( P  pCnt  x
)  -  ( P 
pCnt  y ) ) )  =  ( ( P ^ ( P 
pCnt  x ) )  / 
( P ^ ( P  pCnt  y ) ) ) )
8478, 83eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =  ( ( P ^ ( P  pCnt  x ) )  /  ( P ^ ( P  pCnt  y ) ) ) )
8584oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  ( P ^ ( P  pCnt  A ) ) )  =  ( A  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) ) )
8627oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  /  y )  / 
( ( P ^
( P  pCnt  x
) )  /  ( P ^ ( P  pCnt  y ) ) ) ) )
8767, 53, 64, 70, 54, 72, 71divdivdivd 10848 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
y )  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  x.  ( P ^
( P  pCnt  y
) ) )  / 
( y  x.  ( P ^ ( P  pCnt  x ) ) ) ) )
8885, 86, 873eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  ( P ^ ( P  pCnt  A ) ) )  =  ( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( y  x.  ( P ^
( P  pCnt  x
) ) ) ) )
8966, 73, 883eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  /  ( y  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )
9089oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  A
) )  x.  (
( x  /  ( P ^ ( P  pCnt  x ) ) )  / 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) )  =  ( ( P ^ ( P 
pCnt  A ) )  x.  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) )
911ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  e.  QQ )
9291, 14syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  e.  CC )
93 pcqcl 15561 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  ZZ )
9423, 91, 50, 93syl12anc 1324 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  e.  ZZ )
9579, 80, 94expclzd 13013 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  CC )
9679, 80, 94expne0d 13014 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =/=  0 )
9792, 95, 96divcan2d 10803 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  A
) )  x.  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  A )
9890, 97eqtr2d 2657 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =  ( ( P ^ ( P  pCnt  A ) )  x.  (
( x  /  ( P ^ ( P  pCnt  x ) ) )  / 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) ) )
99 simplrr 801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  e.  ZZ )
100 simprrr 805 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =  ( z  /  w ) )
101100, 29eqnetrrd 2862 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  /  w
)  =/=  0 )
102 simprlr 803 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  NN )
103102nncnd 11036 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  CC )
104102nnne0d 11065 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  =/=  0 )
105103, 104div0d 10800 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( 0  /  w
)  =  0 )
106 oveq1 6657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  0  ->  (
z  /  w )  =  ( 0  /  w ) )
107106eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  0  ->  (
( z  /  w
)  =  0  <->  (
0  /  w )  =  0 ) )
108105, 107syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  =  0  ->  ( z  /  w )  =  0 ) )
109108necon3d 2815 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  /  w )  =/=  0  ->  z  =/=  0 ) )
110101, 109mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  =/=  0 )
111 pczcl 15553 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  NN0 )
11223, 99, 110, 111syl12anc 1324 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  z
)  e.  NN0 )
11325, 112nnexpcld 13030 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  NN )
114113nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  CC )
115114, 103mulcomd 10061 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  z
) )  x.  w
)  =  ( w  x.  ( P ^
( P  pCnt  z
) ) ) )
116115oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  x.  ( P ^ ( P  pCnt  w ) ) )  /  ( ( P ^ ( P 
pCnt  z ) )  x.  w ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( w  x.  ( P ^ ( P  pCnt  z ) ) ) ) )
11799zcnd 11483 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  e.  CC )
11823, 102pccld 15555 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  w
)  e.  NN0 )
11925, 118nnexpcld 13030 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  NN )
120119nncnd 11036 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  CC )
121113nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  =/=  0 )
122119nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  =/=  0 )
123117, 114, 103, 120, 121, 122, 104divdivdivd 10848 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  /  ( w  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( ( P ^
( P  pCnt  z
) )  x.  w
) ) )
124100oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  =  ( P 
pCnt  ( z  /  w ) ) )
125 pcdiv 15557 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 )  /\  w  e.  NN )  ->  ( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
12623, 99, 110, 102, 125syl121anc 1331 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
127124, 126eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
128127oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =  ( P ^
( ( P  pCnt  z )  -  ( P 
pCnt  w ) ) ) )
129118nn0zd 11480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  w
)  e.  ZZ )
130112nn0zd 11480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  z
)  e.  ZZ )
13179, 80, 129, 130expsubd 13019 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ (
( P  pCnt  z
)  -  ( P 
pCnt  w ) ) )  =  ( ( P ^ ( P  pCnt  z ) )  /  ( P ^ ( P  pCnt  w ) ) ) )
132128, 131eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =  ( ( P ^ ( P  pCnt  z ) )  /  ( P ^ ( P  pCnt  w ) ) ) )
133132oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  ( P ^ ( P  pCnt  B ) ) )  =  ( B  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) ) )
134100oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  /  w )  / 
( ( P ^
( P  pCnt  z
) )  /  ( P ^ ( P  pCnt  w ) ) ) ) )
135117, 103, 114, 120, 104, 122, 121divdivdivd 10848 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  /  w )  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( w  x.  ( P ^ ( P  pCnt  z ) ) ) ) )
136133, 134, 1353eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  ( P ^ ( P  pCnt  B ) ) )  =  ( ( z  x.  ( P ^ ( P  pCnt  w ) ) )  /  ( w  x.  ( P ^
( P  pCnt  z
) ) ) ) )
137116, 123, 1363eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  /  ( w  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( B  / 
( P ^ ( P  pCnt  B ) ) ) )
138137oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  B
) )  x.  (
( z  /  ( P ^ ( P  pCnt  z ) ) )  / 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) )  =  ( ( P ^ ( P 
pCnt  B ) )  x.  ( B  /  ( P ^ ( P  pCnt  B ) ) ) ) )
139 qcn 11802 . . . . . . . . . . . 12  |-  ( B  e.  QQ  ->  B  e.  CC )
14028, 139syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  e.  CC )
14179, 80, 31expclzd 13013 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  e.  CC )
14279, 80, 31expne0d 13014 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =/=  0 )
143140, 141, 142divcan2d 10803 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  B
) )  x.  ( B  /  ( P ^
( P  pCnt  B
) ) ) )  =  B )
144138, 143eqtr2d 2657 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =  ( ( P ^ ( P  pCnt  B ) )  x.  (
( z  /  ( P ^ ( P  pCnt  z ) ) )  / 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) ) )
145 eluz 11701 . . . . . . . . . . 11  |-  ( ( ( P  pCnt  A
)  e.  ZZ  /\  ( P  pCnt  B )  e.  ZZ )  -> 
( ( P  pCnt  B )  e.  ( ZZ>= `  ( P  pCnt  A ) )  <->  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
14694, 31, 145syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P  pCnt  B )  e.  ( ZZ>= `  ( P  pCnt  A ) )  <->  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
14745, 146mpbird 247 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  ( ZZ>= `  ( P  pCnt  A ) ) )
148 pczdvds 15567 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P ^
( P  pCnt  x
) )  ||  x
)
14923, 26, 60, 148syl12anc 1324 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) ) 
||  x )
15063nnzd 11481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  ZZ )
151 dvdsval2 14986 . . . . . . . . . . . 12  |-  ( ( ( P ^ ( P  pCnt  x ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  x ) )  =/=  0  /\  x  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  x ) )  ||  x  <->  ( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ ) )
152150, 71, 26, 151syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  x
) )  ||  x  <->  ( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ ) )
153149, 152mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ )
154 pczndvds2 15571 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  -.  P  ||  (
x  /  ( P ^ ( P  pCnt  x ) ) ) )
15523, 26, 60, 154syl12anc 1324 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( x  /  ( P ^
( P  pCnt  x
) ) ) )
156153, 155jca 554 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  e.  ZZ  /\  -.  P  ||  ( x  /  ( P ^
( P  pCnt  x
) ) ) ) )
157 pcdvds 15568 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  y  e.  NN )  ->  ( P ^ ( P  pCnt  y ) )  ||  y
)
15823, 52, 157syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) ) 
||  y )
15969nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  ZZ )
16052nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  ZZ )
161 dvdsval2 14986 . . . . . . . . . . . . 13  |-  ( ( ( P ^ ( P  pCnt  y ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  y ) )  =/=  0  /\  y  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  y ) )  ||  y  <->  ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ ) )
162159, 72, 160, 161syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  y
) )  ||  y  <->  ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ ) )
163158, 162mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ )
16452nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  RR )
16569nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  RR )
16652nngt0d 11064 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  y )
16769nngt0d 11064 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( P ^ ( P  pCnt  y ) ) )
168164, 165, 166, 167divgt0d 10959 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( y  /  ( P ^
( P  pCnt  y
) ) ) )
169 elnnz 11387 . . . . . . . . . . 11  |-  ( ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  NN  <->  ( ( y  /  ( P ^
( P  pCnt  y
) ) )  e.  ZZ  /\  0  < 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) )
170163, 168, 169sylanbrc 698 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  NN )
171 pcndvds2 15572 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  y  e.  NN )  ->  -.  P  ||  ( y  / 
( P ^ ( P  pCnt  y ) ) ) )
17223, 52, 171syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( y  /  ( P ^
( P  pCnt  y
) ) ) )
173170, 172jca 554 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( y  / 
( P ^ ( P  pCnt  y ) ) )  e.  NN  /\  -.  P  ||  ( y  /  ( P ^
( P  pCnt  y
) ) ) ) )
174 pczdvds 15567 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P ^
( P  pCnt  z
) )  ||  z
)
17523, 99, 110, 174syl12anc 1324 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) ) 
||  z )
176113nnzd 11481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  ZZ )
177 dvdsval2 14986 . . . . . . . . . . . 12  |-  ( ( ( P ^ ( P  pCnt  z ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  z ) )  =/=  0  /\  z  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  z ) )  ||  z  <->  ( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ ) )
178176, 121, 99, 177syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  z
) )  ||  z  <->  ( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ ) )
179175, 178mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ )
180 pczndvds2 15571 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  -.  P  ||  (
z  /  ( P ^ ( P  pCnt  z ) ) ) )
18123, 99, 110, 180syl12anc 1324 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( z  /  ( P ^
( P  pCnt  z
) ) ) )
182179, 181jca 554 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  e.  ZZ  /\  -.  P  ||  ( z  /  ( P ^
( P  pCnt  z
) ) ) ) )
183 pcdvds 15568 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  w  e.  NN )  ->  ( P ^ ( P  pCnt  w ) )  ||  w
)
18423, 102, 183syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) ) 
||  w )
185119nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  ZZ )
186102nnzd 11481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  ZZ )
187 dvdsval2 14986 . . . . . . . . . . . . 13  |-  ( ( ( P ^ ( P  pCnt  w ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  w ) )  =/=  0  /\  w  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  w ) )  ||  w  <->  ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ ) )
188185, 122, 186, 187syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  w
) )  ||  w  <->  ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ ) )
189184, 188mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ )
190102nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  RR )
191119nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  RR )
192102nngt0d 11064 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  w )
193119nngt0d 11064 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( P ^ ( P  pCnt  w ) ) )
194190, 191, 192, 193divgt0d 10959 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( w  /  ( P ^
( P  pCnt  w
) ) ) )
195 elnnz 11387 . . . . . . . . . . 11  |-  ( ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  NN  <->  ( ( w  /  ( P ^
( P  pCnt  w
) ) )  e.  ZZ  /\  0  < 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) )
196189, 194, 195sylanbrc 698 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  NN )
197 pcndvds2 15572 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  w  e.  NN )  ->  -.  P  ||  ( w  / 
( P ^ ( P  pCnt  w ) ) ) )
19823, 102, 197syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( w  /  ( P ^
( P  pCnt  w
) ) ) )
199196, 198jca 554 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( w  / 
( P ^ ( P  pCnt  w ) ) )  e.  NN  /\  -.  P  ||  ( w  /  ( P ^
( P  pCnt  w
) ) ) ) )
20023, 98, 144, 147, 156, 173, 182, 199pcaddlem 15592 . . . . . . . 8  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
201200expr 643 . . . . . . 7  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) ) )
202201rexlimdvva 3038 . . . . . 6  |-  ( ( ( ph  /\  B  =/=  0 )  /\  (
x  e.  ZZ  /\  z  e.  ZZ )
)  ->  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) ) )
20322, 202syl5bir 233 . . . . 5  |-  ( ( ( ph  /\  B  =/=  0 )  /\  (
x  e.  ZZ  /\  z  e.  ZZ )
)  ->  ( ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) ) )
204203rexlimdvva 3038 . . . 4  |-  ( (
ph  /\  B  =/=  0 )  ->  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) ) )
20521, 204syl5bir 233 . . 3  |-  ( (
ph  /\  B  =/=  0 )  ->  (
( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
20620, 205pm2.61dane 2881 . 2  |-  ( ph  ->  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
2073, 6, 206mp2and 715 1  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   ^cexp 12860    || cdvds 14983   Primecprime 15385    pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  pcadd2  15594  padicabv  25319
  Copyright terms: Public domain W3C validator