MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phicl2 Structured version   Visualization version   Unicode version

Theorem phicl2 15473
Description: Bounds and closure for the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phicl2  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )

Proof of Theorem phicl2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 phival 15472 . 2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
2 fzfi 12771 . . . . . . 7  |-  ( 1 ... N )  e. 
Fin
3 ssrab2 3687 . . . . . . 7  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
4 ssfi 8180 . . . . . . 7  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N ) )  ->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin )
52, 3, 4mp2an 708 . . . . . 6  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin
6 hashcl 13147 . . . . . 6  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e. 
NN0 )
75, 6ax-mp 5 . . . . 5  |-  ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0
87nn0zi 11402 . . . 4  |-  ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ
98a1i 11 . . 3  |-  ( N  e.  NN  ->  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ZZ )
10 1z 11407 . . . . 5  |-  1  e.  ZZ
11 hashsng 13159 . . . . 5  |-  ( 1  e.  ZZ  ->  ( # `
 { 1 } )  =  1 )
1210, 11ax-mp 5 . . . 4  |-  ( # `  { 1 } )  =  1
13 ovex 6678 . . . . . . 7  |-  ( 1 ... N )  e. 
_V
1413rabex 4813 . . . . . 6  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  _V
15 eluzfz1 12348 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
16 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1715, 16eleq2s 2719 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
18 nnz 11399 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
19 1gcd 15254 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
2018, 19syl 17 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  gcd  N )  =  1 )
21 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  gcd  N )  =  ( 1  gcd 
N ) )
2221eqeq1d 2624 . . . . . . . . 9  |-  ( x  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
1  gcd  N )  =  1 ) )
2322elrab 3363 . . . . . . . 8  |-  ( 1  e.  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  <->  ( 1  e.  ( 1 ... N )  /\  (
1  gcd  N )  =  1 ) )
2417, 20, 23sylanbrc 698 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )
2524snssd 4340 . . . . . 6  |-  ( N  e.  NN  ->  { 1 }  C_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
26 ssdomg 8001 . . . . . 6  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  _V  ->  ( { 1 }  C_  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  ->  { 1 }  ~<_  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
2714, 25, 26mpsyl 68 . . . . 5  |-  ( N  e.  NN  ->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
28 snfi 8038 . . . . . 6  |-  { 1 }  e.  Fin
29 hashdom 13168 . . . . . 6  |-  ( ( { 1 }  e.  Fin  /\  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )  ->  ( ( # `  { 1 } )  <_  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
3028, 5, 29mp2an 708 . . . . 5  |-  ( (
# `  { 1 } )  <_  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
3127, 30sylibr 224 . . . 4  |-  ( N  e.  NN  ->  ( # `
 { 1 } )  <_  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
3212, 31syl5eqbrr 4689 . . 3  |-  ( N  e.  NN  ->  1  <_  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
33 ssdomg 8001 . . . . . 6  |-  ( ( 1 ... N )  e.  _V  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3413, 3, 33mp2 9 . . . . 5  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N )
35 hashdom 13168 . . . . . 6  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... N ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... N
) ) )
365, 2, 35mp2an 708 . . . . 5  |-  ( (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... N ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... N
) )
3734, 36mpbir 221 . . . 4  |-  ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  ( # `  (
1 ... N ) )
38 nnnn0 11299 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
39 hashfz1 13134 . . . . 5  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
4038, 39syl 17 . . . 4  |-  ( N  e.  NN  ->  ( # `
 ( 1 ... N ) )  =  N )
4137, 40syl5breq 4690 . . 3  |-  ( N  e.  NN  ->  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N )
42 elfz1 12331 . . . 4  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ( 1 ... N )  <->  ( ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ZZ  /\  1  <_ 
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
4310, 18, 42sylancr 695 . . 3  |-  ( N  e.  NN  ->  (
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N
)  <->  ( ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ  /\  1  <_  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  /\  ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  N )
) )
449, 32, 41, 43mpbir3and 1245 . 2  |-  ( N  e.  NN  ->  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N
) )
451, 44eqeltrd 2701 1  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ~<_ cdom 7953   Fincfn 7955   1c1 9937    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117    gcd cgcd 15216   phicphi 15469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-phi 15471
This theorem is referenced by:  phicl  15474  phi1  15478
  Copyright terms: Public domain W3C validator