MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divmo Structured version   Visualization version   Unicode version

Theorem ply1divmo 23895
Description: Uniqueness of a quotient in a polynomial division. For polynomials  F ,  G such that  G  =/=  0 and the leading coefficient of  G is not a zero divisor, there is at most one polynomial  q which satisfies  F  =  ( G  x.  q )  +  r where the degree of  r is less than the degree of  G. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
ply1divalg.p  |-  P  =  (Poly1 `  R )
ply1divalg.d  |-  D  =  ( deg1  `  R )
ply1divalg.b  |-  B  =  ( Base `  P
)
ply1divalg.m  |-  .-  =  ( -g `  P )
ply1divalg.z  |-  .0.  =  ( 0g `  P )
ply1divalg.t  |-  .xb  =  ( .r `  P )
ply1divalg.r1  |-  ( ph  ->  R  e.  Ring )
ply1divalg.f  |-  ( ph  ->  F  e.  B )
ply1divalg.g1  |-  ( ph  ->  G  e.  B )
ply1divalg.g2  |-  ( ph  ->  G  =/=  .0.  )
ply1divmo.g3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  E )
ply1divmo.e  |-  E  =  (RLReg `  R )
Assertion
Ref Expression
ply1divmo  |-  ( ph  ->  E* q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Distinct variable groups:    ph, q    B, q    D, q    F, q    G, q    .- , q    .xb , q
Allowed substitution hints:    P( q)    R( q)    E( q)    .0. ( q)

Proof of Theorem ply1divmo
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 ply1divalg.r1 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  Ring )
21adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  ->  R  e.  Ring )
3 ply1divalg.p . . . . . . . . . . . . 13  |-  P  =  (Poly1 `  R )
43ply1ring 19618 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  P  e. 
Ring )
52, 4syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  ->  P  e.  Ring )
6 ringgrp 18552 . . . . . . . . . . 11  |-  ( P  e.  Ring  ->  P  e. 
Grp )
75, 6syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  ->  P  e.  Grp )
8 ply1divalg.f . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  B )
98adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  ->  F  e.  B )
10 ply1divalg.g1 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  B )
1110adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  ->  G  e.  B )
12 simprl 794 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
q  e.  B )
13 ply1divalg.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  P
)
14 ply1divalg.t . . . . . . . . . . . . 13  |-  .xb  =  ( .r `  P )
1513, 14ringcl 18561 . . . . . . . . . . . 12  |-  ( ( P  e.  Ring  /\  G  e.  B  /\  q  e.  B )  ->  ( G  .xb  q )  e.  B )
165, 11, 12, 15syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( G  .xb  q
)  e.  B )
17 ply1divalg.m . . . . . . . . . . . 12  |-  .-  =  ( -g `  P )
1813, 17grpsubcl 17495 . . . . . . . . . . 11  |-  ( ( P  e.  Grp  /\  F  e.  B  /\  ( G  .xb  q )  e.  B )  -> 
( F  .-  ( G  .xb  q ) )  e.  B )
197, 9, 16, 18syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( F  .-  ( G  .xb  q ) )  e.  B )
20 simprr 796 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
r  e.  B )
2113, 14ringcl 18561 . . . . . . . . . . . 12  |-  ( ( P  e.  Ring  /\  G  e.  B  /\  r  e.  B )  ->  ( G  .xb  r )  e.  B )
225, 11, 20, 21syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( G  .xb  r
)  e.  B )
2313, 17grpsubcl 17495 . . . . . . . . . . 11  |-  ( ( P  e.  Grp  /\  F  e.  B  /\  ( G  .xb  r )  e.  B )  -> 
( F  .-  ( G  .xb  r ) )  e.  B )
247, 9, 22, 23syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( F  .-  ( G  .xb  r ) )  e.  B )
2513, 17grpsubcl 17495 . . . . . . . . . 10  |-  ( ( P  e.  Grp  /\  ( F  .-  ( G 
.xb  q ) )  e.  B  /\  ( F  .-  ( G  .xb  r ) )  e.  B )  ->  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) )  e.  B
)
267, 19, 24, 25syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) )  e.  B )
27 ply1divalg.d . . . . . . . . . 10  |-  D  =  ( deg1  `  R )
2827, 3, 13deg1xrcl 23842 . . . . . . . . 9  |-  ( ( ( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) )  e.  B  ->  ( D `  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) )  e. 
RR* )
2926, 28syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( D `  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) )  e. 
RR* )
3027, 3, 13deg1xrcl 23842 . . . . . . . . . 10  |-  ( ( F  .-  ( G 
.xb  r ) )  e.  B  ->  ( D `  ( F  .-  ( G  .xb  r
) ) )  e. 
RR* )
3124, 30syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( D `  ( F  .-  ( G  .xb  r ) ) )  e.  RR* )
3227, 3, 13deg1xrcl 23842 . . . . . . . . . 10  |-  ( ( F  .-  ( G 
.xb  q ) )  e.  B  ->  ( D `  ( F  .-  ( G  .xb  q
) ) )  e. 
RR* )
3319, 32syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( D `  ( F  .-  ( G  .xb  q ) ) )  e.  RR* )
3431, 33ifcld 4131 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  ->  if ( ( D `  ( F  .-  ( G 
.xb  q ) ) )  <_  ( D `  ( F  .-  ( G  .xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  e.  RR* )
3527, 3, 13deg1xrcl 23842 . . . . . . . . 9  |-  ( G  e.  B  ->  ( D `  G )  e.  RR* )
3611, 35syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( D `  G
)  e.  RR* )
3729, 34, 363jca 1242 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  e.  RR*  /\  if ( ( D `  ( F  .-  ( G 
.xb  q ) ) )  <_  ( D `  ( F  .-  ( G  .xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  e.  RR*  /\  ( D `  G )  e.  RR* ) )
3837adantr 481 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  ( ( D `  ( F  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )  ->  ( ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F  .-  ( G 
.xb  r ) ) ) )  e.  RR*  /\  if ( ( D `
 ( F  .-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G  .xb  r
) ) ) ,  ( D `  ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F  .-  ( G 
.xb  q ) ) ) )  e.  RR*  /\  ( D `  G
)  e.  RR* )
)
393, 27, 2, 13, 17, 19, 24deg1suble 23867 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( D `  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) )  <_  if ( ( D `  ( F  .-  ( G 
.xb  q ) ) )  <_  ( D `  ( F  .-  ( G  .xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) ) )
4039adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  ( ( D `  ( F  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )  ->  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  <_  if (
( D `  ( F  .-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G 
.xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) ) )
41 xrmaxlt 12012 . . . . . . . . 9  |-  ( ( ( D `  ( F  .-  ( G  .xb  q ) ) )  e.  RR*  /\  ( D `  ( F  .-  ( G  .xb  r
) ) )  e. 
RR*  /\  ( D `  G )  e.  RR* )  ->  ( if ( ( D `  ( F  .-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G 
.xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  <  ( D `
 G )  <->  ( ( D `  ( F  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) ) )
4233, 31, 36, 41syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( if ( ( D `  ( F 
.-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G 
.xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  <  ( D `
 G )  <->  ( ( D `  ( F  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) ) )
4342biimpar 502 . . . . . . 7  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  ( ( D `  ( F  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )  ->  if (
( D `  ( F  .-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G 
.xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  <  ( D `
 G ) )
4440, 43jca 554 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  ( ( D `  ( F  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )  ->  ( ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F  .-  ( G 
.xb  r ) ) ) )  <_  if ( ( D `  ( F  .-  ( G 
.xb  q ) ) )  <_  ( D `  ( F  .-  ( G  .xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  /\  if ( ( D `  ( F  .-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G 
.xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  <  ( D `
 G ) ) )
45 xrlelttr 11987 . . . . . 6  |-  ( ( ( D `  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) )  e. 
RR*  /\  if (
( D `  ( F  .-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G 
.xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  e.  RR*  /\  ( D `  G )  e.  RR* )  ->  (
( ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  <_  if (
( D `  ( F  .-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G 
.xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  /\  if ( ( D `  ( F  .-  ( G  .xb  q ) ) )  <_  ( D `  ( F  .-  ( G 
.xb  r ) ) ) ,  ( D `
 ( F  .-  ( G  .xb  r ) ) ) ,  ( D `  ( F 
.-  ( G  .xb  q ) ) ) )  <  ( D `
 G ) )  ->  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  <  ( D `
 G ) ) )
4638, 44, 45sylc 65 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  ( ( D `  ( F  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )  ->  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  <  ( D `
 G ) )
4746ex 450 . . . 4  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( ( D `
 ( F  .-  ( G  .xb  q ) ) )  <  ( D `  G )  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `  G ) )  -> 
( D `  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) )  < 
( D `  G
) ) )
48 ply1divalg.g2 . . . . . . . . . . . . 13  |-  ( ph  ->  G  =/=  .0.  )
49 ply1divalg.z . . . . . . . . . . . . . 14  |-  .0.  =  ( 0g `  P )
5027, 3, 49, 13deg1nn0cl 23848 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  G  e.  B  /\  G  =/= 
.0.  )  ->  ( D `  G )  e.  NN0 )
511, 10, 48, 50syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( D `  G
)  e.  NN0 )
5251ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  ( D `  G )  e.  NN0 )
5352nn0red 11352 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  ( D `  G )  e.  RR )
541ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  R  e.  Ring )
5513, 17grpsubcl 17495 . . . . . . . . . . . . 13  |-  ( ( P  e.  Grp  /\  r  e.  B  /\  q  e.  B )  ->  ( r  .-  q
)  e.  B )
567, 20, 12, 55syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( r  .-  q
)  e.  B )
5756adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  (
r  .-  q )  e.  B )
5813, 49, 17grpsubeq0 17501 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Grp  /\  r  e.  B  /\  q  e.  B )  ->  ( ( r  .-  q )  =  .0.  <->  r  =  q ) )
597, 20, 12, 58syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( r  .-  q )  =  .0.  <->  r  =  q ) )
60 equcom 1945 . . . . . . . . . . . . . 14  |-  ( r  =  q  <->  q  =  r )
6159, 60syl6bb 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( r  .-  q )  =  .0.  <->  q  =  r ) )
6261necon3bid 2838 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( r  .-  q )  =/=  .0.  <->  q  =/=  r ) )
6362biimpar 502 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  (
r  .-  q )  =/=  .0.  )
6427, 3, 49, 13deg1nn0cl 23848 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
r  .-  q )  e.  B  /\  (
r  .-  q )  =/=  .0.  )  ->  ( D `  ( r  .-  q ) )  e. 
NN0 )
6554, 57, 63, 64syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  ( D `  ( r  .-  q ) )  e. 
NN0 )
66 nn0addge1 11339 . . . . . . . . . 10  |-  ( ( ( D `  G
)  e.  RR  /\  ( D `  ( r 
.-  q ) )  e.  NN0 )  -> 
( D `  G
)  <_  ( ( D `  G )  +  ( D `  ( r  .-  q
) ) ) )
6753, 65, 66syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  ( D `  G )  <_  ( ( D `  G )  +  ( D `  ( r 
.-  q ) ) ) )
68 ply1divmo.e . . . . . . . . . 10  |-  E  =  (RLReg `  R )
6910ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  G  e.  B )
7048ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  G  =/=  .0.  )
71 ply1divmo.g3 . . . . . . . . . . 11  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  E )
7271ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  (
(coe1 `  G ) `  ( D `  G ) )  e.  E )
7327, 3, 68, 13, 14, 49, 54, 69, 70, 72, 57, 63deg1mul2 23874 . . . . . . . . 9  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  ( D `  ( G  .xb  ( r  .-  q
) ) )  =  ( ( D `  G )  +  ( D `  ( r 
.-  q ) ) ) )
7467, 73breqtrrd 4681 . . . . . . . 8  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  ( D `  G )  <_  ( D `  ( G  .xb  ( r  .-  q ) ) ) )
75 ringabl 18580 . . . . . . . . . . . . 13  |-  ( P  e.  Ring  ->  P  e. 
Abel )
765, 75syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  ->  P  e.  Abel )
7713, 17, 76, 9, 16, 22ablnnncan1 18229 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) )  =  ( ( G 
.xb  r )  .-  ( G  .xb  q ) ) )
7813, 14, 17, 5, 11, 20, 12ringsubdi 18599 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( G  .xb  (
r  .-  q )
)  =  ( ( G  .xb  r )  .-  ( G  .xb  q
) ) )
7977, 78eqtr4d 2659 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) )  =  ( G  .xb  ( r  .-  q
) ) )
8079fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( D `  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) )  =  ( D `  ( G  .xb  ( r  .-  q ) ) ) )
8180adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F  .-  ( G 
.xb  r ) ) ) )  =  ( D `  ( G 
.xb  ( r  .-  q ) ) ) )
8274, 81breqtrrd 4681 . . . . . . 7  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  ( D `  G )  <_  ( D `  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) ) )
83 xrlenlt 10103 . . . . . . . . 9  |-  ( ( ( D `  G
)  e.  RR*  /\  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F  .-  ( G 
.xb  r ) ) ) )  e.  RR* )  ->  ( ( D `
 G )  <_ 
( D `  (
( F  .-  ( G  .xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) )  <->  -.  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F  .-  ( G 
.xb  r ) ) ) )  <  ( D `  G )
) )
8436, 29, 83syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( D `  G )  <_  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F  .-  ( G 
.xb  r ) ) ) )  <->  -.  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F  .-  ( G 
.xb  r ) ) ) )  <  ( D `  G )
) )
8584adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  (
( D `  G
)  <_  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  <->  -.  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  <  ( D `
 G ) ) )
8682, 85mpbid 222 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  B  /\  r  e.  B )
)  /\  q  =/=  r )  ->  -.  ( D `  ( ( F  .-  ( G 
.xb  q ) ) 
.-  ( F  .-  ( G  .xb  r ) ) ) )  < 
( D `  G
) )
8786ex 450 . . . . 5  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( q  =/=  r  ->  -.  ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  <  ( D `
 G ) ) )
8887necon4ad 2813 . . . 4  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( D `  ( ( F  .-  ( G  .xb  q ) )  .-  ( F 
.-  ( G  .xb  r ) ) ) )  <  ( D `
 G )  -> 
q  =  r ) )
8947, 88syld 47 . . 3  |-  ( (
ph  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( ( ( D `
 ( F  .-  ( G  .xb  q ) ) )  <  ( D `  G )  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `  G ) )  -> 
q  =  r ) )
9089ralrimivva 2971 . 2  |-  ( ph  ->  A. q  e.  B  A. r  e.  B  ( ( ( D `
 ( F  .-  ( G  .xb  q ) ) )  <  ( D `  G )  /\  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `  G ) )  -> 
q  =  r ) )
91 oveq2 6658 . . . . . 6  |-  ( q  =  r  ->  ( G  .xb  q )  =  ( G  .xb  r
) )
9291oveq2d 6666 . . . . 5  |-  ( q  =  r  ->  ( F  .-  ( G  .xb  q ) )  =  ( F  .-  ( G  .xb  r ) ) )
9392fveq2d 6195 . . . 4  |-  ( q  =  r  ->  ( D `  ( F  .-  ( G  .xb  q
) ) )  =  ( D `  ( F  .-  ( G  .xb  r ) ) ) )
9493breq1d 4663 . . 3  |-  ( q  =  r  ->  (
( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  ( D `  ( F  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
9594rmo4 3399 . 2  |-  ( E* q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  A. q  e.  B  A. r  e.  B  ( (
( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `  G )  /\  ( D `  ( F  .-  ( G  .xb  r
) ) )  < 
( D `  G
) )  ->  q  =  r ) )
9690, 95sylibr 224 1  |-  ( ph  ->  E* q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E*wrmo 2915   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   NN0cn0 11292   Basecbs 15857   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422   -gcsg 17424   Abelcabl 18194   Ringcrg 18547  RLRegcrlreg 19279  Poly1cpl1 19547  coe1cco1 19548   deg1 cdg1 23814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-subrg 18778  df-lmod 18865  df-lss 18933  df-rlreg 19283  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553  df-cnfld 19747  df-mdeg 23815  df-deg1 23816
This theorem is referenced by:  ply1divalg  23897
  Copyright terms: Public domain W3C validator