MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divex Structured version   Visualization version   Unicode version

Theorem ply1divex 23896
Description: Lemma for ply1divalg 23897: existence part. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p  |-  P  =  (Poly1 `  R )
ply1divalg.d  |-  D  =  ( deg1  `  R )
ply1divalg.b  |-  B  =  ( Base `  P
)
ply1divalg.m  |-  .-  =  ( -g `  P )
ply1divalg.z  |-  .0.  =  ( 0g `  P )
ply1divalg.t  |-  .xb  =  ( .r `  P )
ply1divalg.r1  |-  ( ph  ->  R  e.  Ring )
ply1divalg.f  |-  ( ph  ->  F  e.  B )
ply1divalg.g1  |-  ( ph  ->  G  e.  B )
ply1divalg.g2  |-  ( ph  ->  G  =/=  .0.  )
ply1divex.o  |-  .1.  =  ( 1r `  R )
ply1divex.k  |-  K  =  ( Base `  R
)
ply1divex.u  |-  .x.  =  ( .r `  R )
ply1divex.i  |-  ( ph  ->  I  e.  K )
ply1divex.g3  |-  ( ph  ->  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  =  .1.  )
Assertion
Ref Expression
ply1divex  |-  ( ph  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Distinct variable groups:    .0. , q    F, q    I, q    P, q    R, q    .- , q    B, q    .xb , q    D, q    G, q    ph, q    .x. , q
Allowed substitution hints:    .1. ( q)    K( q)

Proof of Theorem ply1divex
Dummy variables  d 
f  r  a  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( F  =  .0.  ->  ( D `  F )  =  ( D `  .0.  ) )
21breq1d 4663 . . . 4  |-  ( F  =  .0.  ->  (
( D `  F
)  <  ( ( D `  G )  +  d )  <->  ( D `  .0.  )  <  (
( D `  G
)  +  d ) ) )
32rexbidv 3052 . . 3  |-  ( F  =  .0.  ->  ( E. d  e.  NN0  ( D `  F )  <  ( ( D `
 G )  +  d )  <->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) ) )
4 nnssnn0 11295 . . . . 5  |-  NN  C_  NN0
5 ply1divalg.r1 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
65adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  R  e. 
Ring )
7 ply1divalg.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  B )
87adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  F  e.  B )
9 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  F  =/= 
.0.  )
10 ply1divalg.d . . . . . . . . . 10  |-  D  =  ( deg1  `  R )
11 ply1divalg.p . . . . . . . . . 10  |-  P  =  (Poly1 `  R )
12 ply1divalg.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  P )
13 ply1divalg.b . . . . . . . . . 10  |-  B  =  ( Base `  P
)
1410, 11, 12, 13deg1nn0cl 23848 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( D `  F )  e.  NN0 )
156, 8, 9, 14syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 F )  e. 
NN0 )
1615nn0red 11352 . . . . . . 7  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 F )  e.  RR )
17 ply1divalg.g1 . . . . . . . . . 10  |-  ( ph  ->  G  e.  B )
18 ply1divalg.g2 . . . . . . . . . 10  |-  ( ph  ->  G  =/=  .0.  )
1910, 11, 12, 13deg1nn0cl 23848 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  G  e.  B  /\  G  =/= 
.0.  )  ->  ( D `  G )  e.  NN0 )
205, 17, 18, 19syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( D `  G
)  e.  NN0 )
2120nn0red 11352 . . . . . . . 8  |-  ( ph  ->  ( D `  G
)  e.  RR )
2221adantr 481 . . . . . . 7  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 G )  e.  RR )
2316, 22resubcld 10458 . . . . . 6  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( ( D `  F )  -  ( D `  G ) )  e.  RR )
24 arch 11289 . . . . . 6  |-  ( ( ( D `  F
)  -  ( D `
 G ) )  e.  RR  ->  E. d  e.  NN  ( ( D `
 F )  -  ( D `  G ) )  <  d )
2523, 24syl 17 . . . . 5  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN  ( ( D `
 F )  -  ( D `  G ) )  <  d )
26 ssrexv 3667 . . . . 5  |-  ( NN  C_  NN0  ->  ( E. d  e.  NN  (
( D `  F
)  -  ( D `
 G ) )  <  d  ->  E. d  e.  NN0  ( ( D `
 F )  -  ( D `  G ) )  <  d ) )
274, 25, 26mpsyl 68 . . . 4  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN0  ( ( D `
 F )  -  ( D `  G ) )  <  d )
2816adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  ( D `  F )  e.  RR )
2921ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  ( D `  G )  e.  RR )
30 nn0re 11301 . . . . . . . 8  |-  ( d  e.  NN0  ->  d  e.  RR )
3130adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  d  e.  RR )
3228, 29, 31ltsubadd2d 10625 . . . . . 6  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  (
( ( D `  F )  -  ( D `  G )
)  <  d  <->  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
3332biimpd 219 . . . . 5  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  (
( ( D `  F )  -  ( D `  G )
)  <  d  ->  ( D `  F )  <  ( ( D `
 G )  +  d ) ) )
3433reximdva 3017 . . . 4  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( E. d  e.  NN0  (
( D `  F
)  -  ( D `
 G ) )  <  d  ->  E. d  e.  NN0  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
3527, 34mpd 15 . . 3  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN0  ( D `  F )  <  (
( D `  G
)  +  d ) )
36 0nn0 11307 . . . 4  |-  0  e.  NN0
3710, 11, 12deg1z 23847 . . . . . 6  |-  ( R  e.  Ring  ->  ( D `
 .0.  )  = -oo )
385, 37syl 17 . . . . 5  |-  ( ph  ->  ( D `  .0.  )  = -oo )
39 0re 10040 . . . . . . 7  |-  0  e.  RR
40 readdcl 10019 . . . . . . 7  |-  ( ( ( D `  G
)  e.  RR  /\  0  e.  RR )  ->  ( ( D `  G )  +  0 )  e.  RR )
4121, 39, 40sylancl 694 . . . . . 6  |-  ( ph  ->  ( ( D `  G )  +  0 )  e.  RR )
42 mnflt 11957 . . . . . 6  |-  ( ( ( D `  G
)  +  0 )  e.  RR  -> -oo  <  ( ( D `  G
)  +  0 ) )
4341, 42syl 17 . . . . 5  |-  ( ph  -> -oo  <  ( ( D `  G )  +  0 ) )
4438, 43eqbrtrd 4675 . . . 4  |-  ( ph  ->  ( D `  .0.  )  <  ( ( D `
 G )  +  0 ) )
45 oveq2 6658 . . . . . 6  |-  ( d  =  0  ->  (
( D `  G
)  +  d )  =  ( ( D `
 G )  +  0 ) )
4645breq2d 4665 . . . . 5  |-  ( d  =  0  ->  (
( D `  .0.  )  <  ( ( D `
 G )  +  d )  <->  ( D `  .0.  )  <  (
( D `  G
)  +  0 ) ) )
4746rspcev 3309 . . . 4  |-  ( ( 0  e.  NN0  /\  ( D `  .0.  )  <  ( ( D `  G )  +  0 ) )  ->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) )
4836, 44, 47sylancr 695 . . 3  |-  ( ph  ->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) )
493, 35, 48pm2.61ne 2879 . 2  |-  ( ph  ->  E. d  e.  NN0  ( D `  F )  <  ( ( D `
 G )  +  d ) )
507adantr 481 . . . 4  |-  ( (
ph  /\  d  e.  NN0 )  ->  F  e.  B )
51 oveq2 6658 . . . . . . . . . 10  |-  ( a  =  0  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  0 ) )
5251breq2d 4665 . . . . . . . . 9  |-  ( a  =  0  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  0 ) ) )
5352imbi1d 331 . . . . . . . 8  |-  ( a  =  0  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5453ralbidv 2986 . . . . . . 7  |-  ( a  =  0  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5554imbi2d 330 . . . . . 6  |-  ( a  =  0  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
56 oveq2 6658 . . . . . . . . . 10  |-  ( a  =  d  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  d ) )
5756breq2d 4665 . . . . . . . . 9  |-  ( a  =  d  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  d ) ) )
5857imbi1d 331 . . . . . . . 8  |-  ( a  =  d  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5958ralbidv 2986 . . . . . . 7  |-  ( a  =  d  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6059imbi2d 330 . . . . . 6  |-  ( a  =  d  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
61 oveq2 6658 . . . . . . . . . 10  |-  ( a  =  ( d  +  1 )  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  ( d  +  1 ) ) )
6261breq2d 4665 . . . . . . . . 9  |-  ( a  =  ( d  +  1 )  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) ) ) )
6362imbi1d 331 . . . . . . . 8  |-  ( a  =  ( d  +  1 )  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6463ralbidv 2986 . . . . . . 7  |-  ( a  =  ( d  +  1 )  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6564imbi2d 330 . . . . . 6  |-  ( a  =  ( d  +  1 )  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
6611ply1ring 19618 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  P  e. 
Ring )
675, 66syl 17 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Ring )
6813, 12ring0cl 18569 . . . . . . . . . . 11  |-  ( P  e.  Ring  ->  .0.  e.  B )
6967, 68syl 17 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  B )
7069ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  .0.  e.  B )
71 ply1divalg.t . . . . . . . . . . . . . . . . 17  |-  .xb  =  ( .r `  P )
7213, 71, 12ringrz 18588 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Ring  /\  G  e.  B )  ->  ( G  .xb  .0.  )  =  .0.  )
7367, 17, 72syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G  .xb  .0.  )  =  .0.  )
7473oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( f  .-  ( G  .xb  .0.  ) )  =  ( f  .-  .0.  ) )
7574adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  (
f  .-  ( G  .xb 
.0.  ) )  =  ( f  .-  .0.  ) )
76 ringgrp 18552 . . . . . . . . . . . . . . 15  |-  ( P  e.  Ring  ->  P  e. 
Grp )
7767, 76syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  Grp )
78 ply1divalg.m . . . . . . . . . . . . . . 15  |-  .-  =  ( -g `  P )
7913, 12, 78grpsubid1 17500 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Grp  /\  f  e.  B )  ->  ( f  .-  .0.  )  =  f )
8077, 79sylan 488 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  (
f  .-  .0.  )  =  f )
8175, 80eqtr2d 2657 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  f  =  ( f  .-  ( G  .xb  .0.  )
) )
8281fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  ( D `  f )  =  ( D `  ( f  .-  ( G  .xb  .0.  ) ) ) )
8320nn0cnd 11353 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D `  G
)  e.  CC )
8483addid1d 10236 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( D `  G )  +  0 )  =  ( D `
 G ) )
8584adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  G
)  +  0 )  =  ( D `  G ) )
8682, 85breq12d 4666 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  f
)  <  ( ( D `  G )  +  0 )  <->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  <  ( D `
 G ) ) )
8786biimpa 501 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  < 
( D `  G
) )
88 oveq2 6658 . . . . . . . . . . . . 13  |-  ( q  =  .0.  ->  ( G  .xb  q )  =  ( G  .xb  .0.  ) )
8988oveq2d 6666 . . . . . . . . . . . 12  |-  ( q  =  .0.  ->  (
f  .-  ( G  .xb  q ) )  =  ( f  .-  ( G  .xb  .0.  ) ) )
9089fveq2d 6195 . . . . . . . . . . 11  |-  ( q  =  .0.  ->  ( D `  ( f  .-  ( G  .xb  q
) ) )  =  ( D `  (
f  .-  ( G  .xb 
.0.  ) ) ) )
9190breq1d 4663 . . . . . . . . . 10  |-  ( q  =  .0.  ->  (
( D `  (
f  .-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  <  ( D `
 G ) ) )
9291rspcev 3309 . . . . . . . . 9  |-  ( (  .0.  e.  B  /\  ( D `  ( f 
.-  ( G  .xb  .0.  ) ) )  < 
( D `  G
) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
9370, 87, 92syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
9493ex 450 . . . . . . 7  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  f
)  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
9594ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
96 nn0addcl 11328 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D `  G
)  e.  NN0  /\  d  e.  NN0 )  -> 
( ( D `  G )  +  d )  e.  NN0 )
9720, 96sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  G )  +  d )  e. 
NN0 )
9897adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( ( D `
 G )  +  d )  e.  NN0 )
995ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  R  e.  Ring )
100 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  g  e.  B
)
10110, 11, 13deg1cl 23843 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  e.  B  ->  ( D `  g )  e.  ( NN0  u.  { -oo } ) )
102101adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  g )  e.  ( NN0  u.  { -oo } ) )
10320ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  NN0 )
104 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
105104ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
d  +  1 )  e.  NN0 )
106103, 105nn0addcld 11355 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  ( d  +  1 ) )  e.  NN0 )
107106nn0zd 11480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  ( d  +  1 ) )  e.  ZZ )
108 degltlem1 23832 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D `  g
)  e.  ( NN0 
u.  { -oo } )  /\  ( ( D `
 G )  +  ( d  +  1 ) )  e.  ZZ )  ->  ( ( D `
 g )  < 
( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) ) )
109102, 107, 108syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) ) )
110109biimpd 219 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  -> 
( D `  g
)  <_  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 ) ) )
111110impr 649 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) )
11220adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( D `  G )  e.  NN0 )
113112nn0cnd 11353 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( D `  G )  e.  CC )
114 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  NN0  ->  d  e.  CC )
115114adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  d  e.  NN0 )  ->  d  e.  CC )
116 peano2cn 10208 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  e.  CC  ->  (
d  +  1 )  e.  CC )
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( d  +  1 )  e.  CC )
118 1cnd 10056 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  1  e.  CC )
119113, 117, 118addsubassd 10412 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 )  =  ( ( D `  G )  +  ( ( d  +  1 )  -  1 ) ) )
120 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
121 pncan 10287 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  e.  CC  /\  1  e.  CC )  ->  ( ( d  +  1 )  -  1 )  =  d )
122115, 120, 121sylancl 694 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
d  +  1 )  -  1 )  =  d )
123122oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  G )  +  ( ( d  +  1 )  - 
1 ) )  =  ( ( D `  G )  +  d ) )
124119, 123eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 )  =  ( ( D `  G )  +  d ) )
125124adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( ( ( D `  G )  +  ( d  +  1 ) )  - 
1 )  =  ( ( D `  G
)  +  d ) )
126111, 125breqtrd 4679 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  g )  <_  (
( D `  G
)  +  d ) )
12767ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  P  e.  Ring )
12817ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  G  e.  B )
1295ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  R  e.  Ring )
130 ply1divex.i . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  I  e.  K )
131130ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  I  e.  K )
132 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (coe1 `  g
)  =  (coe1 `  g
)
133 ply1divex.k . . . . . . . . . . . . . . . . . . . . . . 23  |-  K  =  ( Base `  R
)
134132, 13, 11, 133coe1f 19581 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  e.  B  ->  (coe1 `  g ) : NN0 --> K )
135134adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (coe1 `  g ) : NN0 --> K )
136 simplr 792 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  d  e.  NN0 )
137103, 136nn0addcld 11355 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  d )  e.  NN0 )
138135, 137ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)
139 ply1divex.u . . . . . . . . . . . . . . . . . . . . 21  |-  .x.  =  ( .r `  R )
140133, 139ringcl 18561 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  I  e.  K  /\  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)  ->  ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  e.  K )
141129, 131, 138, 140syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K
)
142 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  (var1 `  R
)  =  (var1 `  R
)
143 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  ( .s
`  P )  =  ( .s `  P
)
144 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  (mulGrp `  P )  =  (mulGrp `  P )
145 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
146133, 11, 142, 143, 144, 145, 13ply1tmcl 19642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Ring  /\  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K  /\  d  e.  NN0 )  ->  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) )  e.  B )
147129, 141, 136, 146syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )
14813, 71ringcl 18561 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Ring  /\  G  e.  B  /\  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )  -> 
( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
149127, 128, 147, 148syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )
150149adantrr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
151103nn0red 11352 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  RR )
152151leidd 10594 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  <_  ( D `  G
) )
15310, 133, 11, 142, 143, 144, 145deg1tmle 23877 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Ring  /\  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K  /\  d  e.  NN0 )  ->  ( D `  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  <_  d )
154129, 141, 136, 153syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  ( (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  <_  d )
15511, 10, 129, 13, 71, 128, 147, 103, 136, 152, 154deg1mulle2 23869 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  <_  (
( D `  G
)  +  d ) )
156155adantrr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  <_  ( ( D `  G )  +  d ) )
157 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )
158 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  R )  =  ( 0g `  R
)
159158, 133, 11, 142, 143, 144, 145, 13, 71, 139, 128, 129, 141, 136, 103coe1tmmul2fv 19648 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
d  +  ( D `
 G ) ) )  =  ( ( (coe1 `  G ) `  ( D `  G ) )  .x.  ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ) )
160103nn0cnd 11353 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  CC )
161114ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  d  e.  CC )
162160, 161addcomd 10238 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  d )  =  ( d  +  ( D `  G
) ) )
163162fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
( D `  G
)  +  d ) )  =  ( (coe1 `  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
d  +  ( D `
 G ) ) ) )
164 ply1divex.g3 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  =  .1.  )
165164oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( (coe1 `  G ) `  ( D `  G )
)  .x.  I )  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  (  .1.  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) )
166165ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  (  .1.  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) )
167 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (coe1 `  G
)  =  (coe1 `  G
)
168167, 13, 11, 133coe1f 19581 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( G  e.  B  ->  (coe1 `  G ) : NN0 --> K )
16917, 168syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  (coe1 `  G ) : NN0 --> K )
170169ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (coe1 `  G ) : NN0 --> K )
171170, 103ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  G ) `  ( D `  G ) )  e.  K )
172133, 139ringass 18564 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  (
( (coe1 `  G ) `  ( D `  G ) )  e.  K  /\  I  e.  K  /\  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
) )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ) )
173129, 171, 131, 138, 172syl13anc 1328 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ) )
174 ply1divex.o . . . . . . . . . . . . . . . . . . . . 21  |-  .1.  =  ( 1r `  R )
175133, 139, 174ringlidm 18571 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)  ->  (  .1.  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )
176129, 138, 175syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (  .1.  .x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) )  =  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )
177166, 173, 1763eqtr3rd 2665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  =  ( ( (coe1 `  G ) `  ( D `  G ) )  .x.  ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ) )
178159, 163, 1773eqtr4rd 2667 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  =  ( (coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
( D `  G
)  +  d ) ) )
179178adantrr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) )  =  ( (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) `  ( ( D `  G )  +  d ) ) )
18010, 11, 13, 78, 98, 99, 100, 126, 150, 156, 132, 157, 179deg1sublt 23870 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d ) )
181180adantlrr 757 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( D `  (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )  < 
( ( D `  G )  +  d ) )
18277ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  P  e.  Grp )
183 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  g  e.  B )
18413, 78grpsubcl 17495 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Grp  /\  g  e.  B  /\  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )  -> 
( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
185182, 183, 149, 184syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  e.  B
)
186185adantrr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
187186adantlrr 757 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
188 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
189 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( D `  f )  =  ( D `  ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
190189breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( ( D `  f )  <  ( ( D `  G )  +  d )  <->  ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d ) ) )
191 oveq1 6657 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( f  .-  ( G  .xb  q
) )  =  ( ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )
192191fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( D `  ( f  .-  ( G  .xb  q ) ) )  =  ( D `
 ( ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) ) )
193192breq1d 4663 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( ( D `  ( f  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  <->  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
194193rexbidv 3052 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  <->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
195190, 194imbi12d 334 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( (
( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  ( g  .-  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) ) )
196195rspcva 3307 . . . . . . . . . . . . . . 15  |-  ( ( ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ( D `
 ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
197187, 188, 196syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
198181, 197mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) )
19967ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  P  e.  Ring )
200 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  q  e.  B )
201147adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) )  e.  B )
202 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( +g  `  P )  =  ( +g  `  P )
20313, 202ringacl 18578 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Ring  /\  q  e.  B  /\  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )  -> 
( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )
204199, 200, 201, 203syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( q
( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
20577ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  P  e.  Grp )
206 simplr 792 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  g  e.  B )
207149adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
20817ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  G  e.  B )
20913, 71ringcl 18561 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Ring  /\  G  e.  B  /\  q  e.  B )  ->  ( G  .xb  q )  e.  B )
210199, 208, 200, 209syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  q )  e.  B
)
21113, 202, 78grpsubsub4 17508 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  e.  Grp  /\  ( g  e.  B  /\  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B  /\  ( G  .xb  q )  e.  B ) )  ->  ( ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( ( G  .xb  q ) ( +g  `  P ) ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
212205, 206, 207, 210, 211syl13anc 1328 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( ( G  .xb  q ) ( +g  `  P ) ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
21313, 202, 71ringdi 18566 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Ring  /\  ( G  e.  B  /\  q  e.  B  /\  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B ) )  ->  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
214199, 208, 200, 201, 213syl13anc 1328 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
215214oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( g  .-  ( G  .xb  (
q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  =  ( g  .-  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
216212, 215eqtr4d 2659 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
217216fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  =  ( D `
 ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) ) )
218217breq1d 4663 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  <->  ( D `  ( g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )  <  ( D `  G ) ) )
219218biimpd 219 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  -> 
( D `  (
g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )  < 
( D `  G
) ) )
220 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( G  .xb  r )  =  ( G  .xb  ( q
( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
221220oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( g  .-  ( G  .xb  r
) )  =  ( g  .-  ( G 
.xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
222221fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( D `  ( g  .-  ( G  .xb  r ) ) )  =  ( D `
 ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) ) )
223222breq1d 4663 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( ( D `  ( g  .-  ( G  .xb  r
) ) )  < 
( D `  G
)  <->  ( D `  ( g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )  <  ( D `  G ) ) )
224223rspcev 3309 . . . . . . . . . . . . . . . . 17  |-  ( ( ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B  /\  ( D `  ( g  .-  ( G  .xb  (
q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )  < 
( D `  G
) )  ->  E. r  e.  B  ( D `  ( g  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) )
225204, 219, 224syl6an 568 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
226225rexlimdva 3031 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
227226adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
228227adantlrr 757 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
229198, 228mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )
230229expr 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
231230ralrimiva 2966 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  NN0  /\  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )  ->  A. g  e.  B  ( ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
232 fveq2 6191 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( D `  g )  =  ( D `  f ) )
233232breq1d 4663 . . . . . . . . . . . 12  |-  ( g  =  f  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) ) ) )
234 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (
g  .-  ( G  .xb  r ) )  =  ( f  .-  ( G  .xb  r ) ) )
235234fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  ( D `  ( g  .-  ( G  .xb  r
) ) )  =  ( D `  (
f  .-  ( G  .xb  r ) ) ) )
236235breq1d 4663 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  (
( D `  (
g  .-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
237236rexbidv 3052 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. r  e.  B  ( D `  ( f  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
238 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( r  =  q  ->  ( G  .xb  r )  =  ( G  .xb  q
) )
239238oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( r  =  q  ->  (
f  .-  ( G  .xb  r ) )  =  ( f  .-  ( G  .xb  q ) ) )
240239fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( r  =  q  ->  ( D `  ( f  .-  ( G  .xb  r
) ) )  =  ( D `  (
f  .-  ( G  .xb  q ) ) ) )
241240breq1d 4663 . . . . . . . . . . . . . 14  |-  ( r  =  q  ->  (
( D `  (
f  .-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
242241cbvrexv 3172 . . . . . . . . . . . . 13  |-  ( E. r  e.  B  ( D `  ( f 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
243237, 242syl6bb 276 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
244233, 243imbi12d 334 . . . . . . . . . . 11  |-  ( g  =  f  ->  (
( ( D `  g )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
245244cbvralv 3171 . . . . . . . . . 10  |-  ( A. g  e.  B  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
246231, 245sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  NN0  /\  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
247246exp32 631 . . . . . . . 8  |-  ( ph  ->  ( d  e.  NN0  ->  ( A. f  e.  B  ( ( D `
 f )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
248247com12 32 . . . . . . 7  |-  ( d  e.  NN0  ->  ( ph  ->  ( A. f  e.  B  ( ( D `
 f )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
249248a2d 29 . . . . . 6  |-  ( d  e.  NN0  ->  ( (
ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
25055, 60, 65, 60, 95, 249nn0ind 11472 . . . . 5  |-  ( d  e.  NN0  ->  ( ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )
251250impcom 446 . . . 4  |-  ( (
ph  /\  d  e.  NN0 )  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
252 fveq2 6191 . . . . . . 7  |-  ( f  =  F  ->  ( D `  f )  =  ( D `  F ) )
253252breq1d 4663 . . . . . 6  |-  ( f  =  F  ->  (
( D `  f
)  <  ( ( D `  G )  +  d )  <->  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
254 oveq1 6657 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  .-  ( G  .xb  q ) )  =  ( F  .-  ( G  .xb  q ) ) )
255254fveq2d 6195 . . . . . . . 8  |-  ( f  =  F  ->  ( D `  ( f  .-  ( G  .xb  q
) ) )  =  ( D `  ( F  .-  ( G  .xb  q ) ) ) )
256255breq1d 4663 . . . . . . 7  |-  ( f  =  F  ->  (
( D `  (
f  .-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
257256rexbidv 3052 . . . . . 6  |-  ( f  =  F  ->  ( E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
258253, 257imbi12d 334 . . . . 5  |-  ( f  =  F  ->  (
( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  F )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
259258rspcva 3307 . . . 4  |-  ( ( F  e.  B  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ( D `
 F )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
26050, 251, 259syl2anc 693 . . 3  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  F )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
261260rexlimdva 3031 . 2  |-  ( ph  ->  ( E. d  e. 
NN0  ( D `  F )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
26249, 261mpd 15 1  |-  ( ph  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   -oocmnf 10072    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   .scvsca 15945   0gc0g 16100   Grpcgrp 17422   -gcsg 17424  .gcmg 17540  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548   deg1 cdg1 23814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-subrg 18778  df-lmod 18865  df-lss 18933  df-rlreg 19283  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-cnfld 19747  df-mdeg 23815  df-deg1 23816
This theorem is referenced by:  ply1divalg  23897
  Copyright terms: Public domain W3C validator