MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivalg Structured version   Visualization version   Unicode version

Theorem plydivalg 24054
Description: The division algorithm on polynomials over a subfield  S of the complex numbers. If  F and  G  =/=  0 are polynomials over  S, then there is a unique quotient polynomial  q such that the remainder  F  -  G  x.  q is either zero or has degree less than  G. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plydiv.tm  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
plydiv.rc  |-  ( (
ph  /\  ( x  e.  S  /\  x  =/=  0 ) )  -> 
( 1  /  x
)  e.  S )
plydiv.m1  |-  ( ph  -> 
-u 1  e.  S
)
plydiv.f  |-  ( ph  ->  F  e.  (Poly `  S ) )
plydiv.g  |-  ( ph  ->  G  e.  (Poly `  S ) )
plydiv.z  |-  ( ph  ->  G  =/=  0p )
plydiv.r  |-  R  =  ( F  oF  -  ( G  oF  x.  q )
)
Assertion
Ref Expression
plydivalg  |-  ( ph  ->  E! q  e.  (Poly `  S ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
Distinct variable groups:    x, y,
q, F    ph, x, y    G, q, x, y    x, R, y    S, q, x, y    ph, q
Allowed substitution hint:    R( q)

Proof of Theorem plydivalg
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 plydiv.pl . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
2 plydiv.tm . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
3 plydiv.rc . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  x  =/=  0 ) )  -> 
( 1  /  x
)  e.  S )
4 plydiv.m1 . . 3  |-  ( ph  -> 
-u 1  e.  S
)
5 plydiv.f . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
6 plydiv.g . . 3  |-  ( ph  ->  G  e.  (Poly `  S ) )
7 plydiv.z . . 3  |-  ( ph  ->  G  =/=  0p )
8 plydiv.r . . 3  |-  R  =  ( F  oF  -  ( G  oF  x.  q )
)
91, 2, 3, 4, 5, 6, 7, 8plydivex 24052 . 2  |-  ( ph  ->  E. q  e.  (Poly `  S ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
10 simpll 790 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  ph )
1110, 1sylan 488 . . . . 5  |-  ( ( ( ( ph  /\  ( q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
1210, 2sylan 488 . . . . 5  |-  ( ( ( ( ph  /\  ( q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
1310, 3sylan 488 . . . . 5  |-  ( ( ( ( ph  /\  ( q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  /\  ( x  e.  S  /\  x  =/=  0 ) )  -> 
( 1  /  x
)  e.  S )
1410, 4syl 17 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  -u 1  e.  S )
1510, 5syl 17 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  F  e.  (Poly `  S ) )
1610, 6syl 17 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  G  e.  (Poly `  S ) )
1710, 7syl 17 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  G  =/=  0p )
18 eqid 2622 . . . . 5  |-  ( F  oF  -  ( G  oF  x.  p
) )  =  ( F  oF  -  ( G  oF  x.  p ) )
19 simplrr 801 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  p  e.  (Poly `  S ) )
20 simprr 796 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) )
21 simplrl 800 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  q  e.  (Poly `  S ) )
22 simprl 794 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
2311, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22plydiveu 24053 . . . 4  |-  ( ( ( ph  /\  (
q  e.  (Poly `  S )  /\  p  e.  (Poly `  S )
) )  /\  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )  ->  q  =  p )
2423ex 450 . . 3  |-  ( (
ph  /\  ( q  e.  (Poly `  S )  /\  p  e.  (Poly `  S ) ) )  ->  ( ( ( R  =  0p  \/  (deg `  R
)  <  (deg `  G
) )  /\  (
( F  oF  -  ( G  oF  x.  p )
)  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p
) ) )  < 
(deg `  G )
) )  ->  q  =  p ) )
2524ralrimivva 2971 . 2  |-  ( ph  ->  A. q  e.  (Poly `  S ) A. p  e.  (Poly `  S )
( ( ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
)  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) )  ->  q  =  p ) )
26 oveq2 6658 . . . . . . 7  |-  ( q  =  p  ->  ( G  oF  x.  q
)  =  ( G  oF  x.  p
) )
2726oveq2d 6666 . . . . . 6  |-  ( q  =  p  ->  ( F  oF  -  ( G  oF  x.  q
) )  =  ( F  oF  -  ( G  oF  x.  p ) ) )
288, 27syl5eq 2668 . . . . 5  |-  ( q  =  p  ->  R  =  ( F  oF  -  ( G  oF  x.  p
) ) )
2928eqeq1d 2624 . . . 4  |-  ( q  =  p  ->  ( R  =  0p  <->  ( F  oF  -  ( G  oF  x.  p ) )  =  0p ) )
3028fveq2d 6195 . . . . 5  |-  ( q  =  p  ->  (deg `  R )  =  (deg
`  ( F  oF  -  ( G  oF  x.  p
) ) ) )
3130breq1d 4663 . . . 4  |-  ( q  =  p  ->  (
(deg `  R )  <  (deg `  G )  <->  (deg
`  ( F  oF  -  ( G  oF  x.  p
) ) )  < 
(deg `  G )
) )
3229, 31orbi12d 746 . . 3  |-  ( q  =  p  ->  (
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  <->  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) ) )
3332reu4 3400 . 2  |-  ( E! q  e.  (Poly `  S ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
)  <->  ( E. q  e.  (Poly `  S )
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  /\  A. q  e.  (Poly `  S ) A. p  e.  (Poly `  S )
( ( ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
)  /\  ( ( F  oF  -  ( G  oF  x.  p
) )  =  0p  \/  (deg `  ( F  oF  -  ( G  oF  x.  p )
) )  <  (deg `  G ) ) )  ->  q  =  p ) ) )
349, 25, 33sylanbrc 698 1  |-  ( ph  ->  E! q  e.  (Poly `  S ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    oFcof 6895   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   0pc0p 23436  Polycply 23940  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  quotlem  24055
  Copyright terms: Public domain W3C validator