MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyexmo Structured version   Visualization version   Unicode version

Theorem plyexmo 24068
Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.)
Assertion
Ref Expression
plyexmo  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  S
)  /\  ( p  |`  D )  =  F ) )
Distinct variable groups:    S, p    F, p    D, p

Proof of Theorem plyexmo
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . . . . . . 9  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  -.  D  e.  Fin )
2 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  D  C_  CC )
32sseld 3602 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  b  e.  CC ) )
4 simprll 802 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  e.  (Poly `  CC ) )
5 plyf 23954 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  (Poly `  CC )  ->  p : CC --> CC )
64, 5syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p : CC --> CC )
7 ffn 6045 . . . . . . . . . . . . . . . . . 18  |-  ( p : CC --> CC  ->  p  Fn  CC )
86, 7syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  Fn  CC )
98adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  p  Fn  CC )
10 simprrl 804 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a  e.  (Poly `  CC ) )
11 plyf 23954 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  (Poly `  CC )  ->  a : CC --> CC )
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a : CC --> CC )
13 ffn 6045 . . . . . . . . . . . . . . . . . 18  |-  ( a : CC --> CC  ->  a  Fn  CC )
1412, 13syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a  Fn  CC )
1514adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  a  Fn  CC )
16 cnex 10017 . . . . . . . . . . . . . . . . 17  |-  CC  e.  _V
1716a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  CC  e.  _V )
182sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  b  e.  CC )
19 fnfvof 6911 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  Fn  CC  /\  a  Fn  CC )  /\  ( CC  e.  _V  /\  b  e.  CC ) )  ->  (
( p  oF  -  a ) `  b )  =  ( ( p `  b
)  -  ( a `
 b ) ) )
209, 15, 17, 18, 19syl22anc 1327 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  oF  -  a ) `  b
)  =  ( ( p `  b )  -  ( a `  b ) ) )
216adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  p : CC
--> CC )
2221, 18ffvelrnd 6360 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p `  b )  e.  CC )
23 simprlr 803 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  |`  D )  =  F )
24 simprrr 805 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( a  |`  D )  =  F )
2523, 24eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  |`  D )  =  ( a  |`  D ) )
2625adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p  |`  D )  =  ( a  |`  D )
)
2726fveq1d 6193 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  |`  D ) `  b )  =  ( ( a  |`  D ) `
 b ) )
28 fvres 6207 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  D  ->  (
( p  |`  D ) `
 b )  =  ( p `  b
) )
2928adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  |`  D ) `  b )  =  ( p `  b ) )
30 fvres 6207 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  D  ->  (
( a  |`  D ) `
 b )  =  ( a `  b
) )
3130adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
a  |`  D ) `  b )  =  ( a `  b ) )
3227, 29, 313eqtr3d 2664 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p `  b )  =  ( a `  b ) )
3322, 32subeq0bd 10456 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p `  b )  -  ( a `  b ) )  =  0 )
3420, 33eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  oF  -  a ) `  b
)  =  0 )
3534ex 450 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  ( ( p  oF  -  a ) `
 b )  =  0 ) )
363, 35jcad 555 . . . . . . . . . . . 12  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `
 b )  =  0 ) ) )
37 plysubcl 23978 . . . . . . . . . . . . . 14  |-  ( ( p  e.  (Poly `  CC )  /\  a  e.  (Poly `  CC )
)  ->  ( p  oF  -  a
)  e.  (Poly `  CC ) )
384, 10, 37syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  e.  (Poly `  CC )
)
39 plyf 23954 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a )  e.  (Poly `  CC )  ->  (
p  oF  -  a ) : CC --> CC )
40 ffn 6045 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a ) : CC --> CC  ->  ( p  oF  -  a )  Fn  CC )
41 fniniseg 6338 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a )  Fn  CC  ->  ( b  e.  ( `' ( p  oF  -  a )
" { 0 } )  <->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `  b
)  =  0 ) ) )
4238, 39, 40, 414syl 19 . . . . . . . . . . . 12  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  ( `' ( p  oF  -  a )
" { 0 } )  <->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `  b
)  =  0 ) ) )
4336, 42sylibrd 249 . . . . . . . . . . 11  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  b  e.  ( `' ( p  oF  -  a ) " { 0 } ) ) )
4443ssrdv 3609 . . . . . . . . . 10  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  D  C_  ( `' ( p  oF  -  a ) " {
0 } ) )
45 ssfi 8180 . . . . . . . . . . 11  |-  ( ( ( `' ( p  oF  -  a
) " { 0 } )  e.  Fin  /\  D  C_  ( `' ( p  oF  -  a ) " { 0 } ) )  ->  D  e.  Fin )
4645expcom 451 . . . . . . . . . 10  |-  ( D 
C_  ( `' ( p  oF  -  a ) " {
0 } )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  ->  D  e.  Fin ) )
4744, 46syl 17 . . . . . . . . 9  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  ->  D  e.  Fin ) )
481, 47mtod 189 . . . . . . . 8  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  -.  ( `' ( p  oF  -  a
) " { 0 } )  e.  Fin )
49 df-ne 2795 . . . . . . . . . . . 12  |-  ( ( p  oF  -  a )  =/=  0p 
<->  -.  ( p  oF  -  a )  =  0p )
5049biimpri 218 . . . . . . . . . . 11  |-  ( -.  ( p  oF  -  a )  =  0p  ->  (
p  oF  -  a )  =/=  0p )
51 eqid 2622 . . . . . . . . . . . 12  |-  ( `' ( p  oF  -  a ) " { 0 } )  =  ( `' ( p  oF  -  a ) " {
0 } )
5251fta1 24063 . . . . . . . . . . 11  |-  ( ( ( p  oF  -  a )  e.  (Poly `  CC )  /\  ( p  oF  -  a )  =/=  0p )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  /\  ( # `  ( `' ( p  oF  -  a )
" { 0 } ) )  <_  (deg `  ( p  oF  -  a ) ) ) )
5338, 50, 52syl2an 494 . . . . . . . . . 10  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  -.  ( p  oF  -  a
)  =  0p )  ->  ( ( `' ( p  oF  -  a )
" { 0 } )  e.  Fin  /\  ( # `  ( `' ( p  oF  -  a ) " { 0 } ) )  <_  (deg `  (
p  oF  -  a ) ) ) )
5453simpld 475 . . . . . . . . 9  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  -.  ( p  oF  -  a
)  =  0p )  ->  ( `' ( p  oF  -  a ) " { 0 } )  e.  Fin )
5554ex 450 . . . . . . . 8  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( -.  ( p  oF  -  a
)  =  0p  ->  ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin ) )
5648, 55mt3d 140 . . . . . . 7  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  =  0p )
57 df-0p 23437 . . . . . . 7  |-  0p  =  ( CC  X.  { 0 } )
5856, 57syl6eq 2672 . . . . . 6  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  =  ( CC  X.  {
0 } ) )
5916a1i 11 . . . . . . 7  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  CC  e.  _V )
60 ofsubeq0 11017 . . . . . . 7  |-  ( ( CC  e.  _V  /\  p : CC --> CC  /\  a : CC --> CC )  ->  ( ( p  oF  -  a
)  =  ( CC 
X.  { 0 } )  <->  p  =  a
) )
6159, 6, 12, 60syl3anc 1326 . . . . . 6  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( ( p  oF  -  a )  =  ( CC  X.  { 0 } )  <-> 
p  =  a ) )
6258, 61mpbid 222 . . . . 5  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  =  a )
6362ex 450 . . . 4  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  ( ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) )  ->  p  =  a ) )
6463alrimivv 1856 . . 3  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  A. p A. a
( ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) )  ->  p  =  a ) )
65 eleq1 2689 . . . . 5  |-  ( p  =  a  ->  (
p  e.  (Poly `  CC )  <->  a  e.  (Poly `  CC ) ) )
66 reseq1 5390 . . . . . 6  |-  ( p  =  a  ->  (
p  |`  D )  =  ( a  |`  D ) )
6766eqeq1d 2624 . . . . 5  |-  ( p  =  a  ->  (
( p  |`  D )  =  F  <->  ( a  |`  D )  =  F ) )
6865, 67anbi12d 747 . . . 4  |-  ( p  =  a  ->  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  <->  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )
6968mo4 2517 . . 3  |-  ( E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  <->  A. p A. a ( ( ( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) )  ->  p  =  a )
)
7064, 69sylibr 224 . 2  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F ) )
71 plyssc 23956 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
7271sseli 3599 . . . 4  |-  ( p  e.  (Poly `  S
)  ->  p  e.  (Poly `  CC ) )
7372anim1i 592 . . 3  |-  ( ( p  e.  (Poly `  S )  /\  (
p  |`  D )  =  F )  ->  (
p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F ) )
7473moimi 2520 . 2  |-  ( E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  ->  E* p ( p  e.  (Poly `  S )  /\  ( p  |`  D )  =  F ) )
7570, 74syl 17 1  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  S
)  /\  ( p  |`  D )  =  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471    =/= wne 2794   _Vcvv 3200    C_ wss 3574   {csn 4177   class class class wbr 4653    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   0cc0 9936    <_ cle 10075    - cmin 10266   #chash 13117   0pc0p 23436  Polycply 23940  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator