MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1 Structured version   Visualization version   Unicode version

Theorem fta1 24063
Description: The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg ( F ) roots. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
fta1.1  |-  R  =  ( `' F " { 0 } )
Assertion
Ref Expression
fta1  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) )

Proof of Theorem fta1
Dummy variables  x  g  f  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  (deg `  F )  =  (deg
`  F )
2 dgrcl 23989 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
32adantr 481 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
(deg `  F )  e.  NN0 )
4 eqeq2 2633 . . . . . . 7  |-  ( x  =  0  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  0 ) )
54imbi1d 331 . . . . . 6  |-  ( x  =  0  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  0  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
65ralbidv 2986 . . . . 5  |-  ( x  =  0  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  0  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
7 eqeq2 2633 . . . . . . 7  |-  ( x  =  d  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  d ) )
87imbi1d 331 . . . . . 6  |-  ( x  =  d  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  d  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
98ralbidv 2986 . . . . 5  |-  ( x  =  d  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  d  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
10 eqeq2 2633 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  (
(deg `  f )  =  x  <->  (deg `  f )  =  ( d  +  1 ) ) )
1110imbi1d 331 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  (
( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  f )  =  ( d  +  1 )  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
1211ralbidv 2986 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  ( A. f  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  x  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
13 eqeq2 2633 . . . . . . 7  |-  ( x  =  (deg `  F
)  ->  ( (deg `  f )  =  x  <-> 
(deg `  f )  =  (deg `  F )
) )
1413imbi1d 331 . . . . . 6  |-  ( x  =  (deg `  F
)  ->  ( (
(deg `  f )  =  x  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )  <->  ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
1514ralbidv 2986 . . . . 5  |-  ( x  =  (deg `  F
)  ->  ( A. f  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  f
)  =  x  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
16 eldifsni 4320 . . . . . . . . . . 11  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
f  =/=  0p )
1716adantr 481 . . . . . . . . . 10  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  f  =/=  0p )
18 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  (deg `  f
)  =  0 )
19 eldifi 3732 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
f  e.  (Poly `  CC ) )
2019ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  e.  (Poly `  CC ) )
21 0dgrb 24002 . . . . . . . . . . . . . . . 16  |-  ( f  e.  (Poly `  CC )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
2220, 21syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
2318, 22mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  ( CC  X.  { ( f `  0 ) } ) )
2423fveq1d 6193 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f `  x )  =  ( ( CC  X.  {
( f `  0
) } ) `  x ) )
2519adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  f  e.  (Poly `  CC ) )
26 plyf 23954 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  e.  (Poly `  CC )  ->  f : CC --> CC )
27 ffn 6045 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : CC --> CC  ->  f  Fn  CC )
28 fniniseg 6338 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  Fn  CC  ->  (
x  e.  ( `' f " { 0 } )  <->  ( x  e.  CC  /\  ( f `
 x )  =  0 ) ) )
2925, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  ( x  e.  ( `' f " { 0 } )  <-> 
( x  e.  CC  /\  ( f `  x
)  =  0 ) ) )
3029biimpa 501 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( x  e.  CC  /\  ( f `
 x )  =  0 ) )
3130simprd 479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f `  x )  =  0 )
3230simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  x  e.  CC )
33 fvex 6201 . . . . . . . . . . . . . . . . . . 19  |-  ( f `
 0 )  e. 
_V
3433fvconst2 6469 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( CC  X.  {
( f `  0
) } ) `  x )  =  ( f `  0 ) )
3532, 34syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( ( CC 
X.  { ( f `
 0 ) } ) `  x )  =  ( f ` 
0 ) )
3624, 31, 353eqtr3rd 2665 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( f ` 
0 )  =  0 )
3736sneqd 4189 . . . . . . . . . . . . . . 15  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  { ( f `
 0 ) }  =  { 0 } )
3837xpeq2d 5139 . . . . . . . . . . . . . 14  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  ( CC  X.  { ( f ` 
0 ) } )  =  ( CC  X.  { 0 } ) )
3923, 38eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  ( CC  X.  { 0 } ) )
40 df-0p 23437 . . . . . . . . . . . . 13  |-  0p  =  ( CC  X.  { 0 } )
4139, 40syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( f  e.  ( (Poly `  CC )  \  { 0p }
)  /\  (deg `  f
)  =  0 )  /\  x  e.  ( `' f " {
0 } ) )  ->  f  =  0p )
4241ex 450 . . . . . . . . . . 11  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  ( x  e.  ( `' f " { 0 } )  ->  f  =  0p ) )
4342necon3ad 2807 . . . . . . . . . 10  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  ( f  =/=  0p  ->  -.  x  e.  ( `' f " { 0 } ) ) )
4417, 43mpd 15 . . . . . . . . 9  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  -.  x  e.  ( `' f " {
0 } ) )
4544eq0rdv 3979 . . . . . . . 8  |-  ( ( f  e.  ( (Poly `  CC )  \  {
0p } )  /\  (deg `  f
)  =  0 )  ->  ( `' f
" { 0 } )  =  (/) )
4645ex 450 . . . . . . 7  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
( (deg `  f
)  =  0  -> 
( `' f " { 0 } )  =  (/) ) )
47 dgrcl 23989 . . . . . . . . 9  |-  ( f  e.  (Poly `  CC )  ->  (deg `  f
)  e.  NN0 )
48 nn0ge0 11318 . . . . . . . . 9  |-  ( (deg
`  f )  e. 
NN0  ->  0  <_  (deg `  f ) )
4919, 47, 483syl 18 . . . . . . . 8  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
0  <_  (deg `  f
) )
50 id 22 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( `' f
" { 0 } )  =  (/) )
51 0fin 8188 . . . . . . . . . . 11  |-  (/)  e.  Fin
5250, 51syl6eqel 2709 . . . . . . . . . 10  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( `' f
" { 0 } )  e.  Fin )
5352biantrurd 529 . . . . . . . . 9  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( # `  ( `' f " { 0 } ) )  <_  (deg `  f
)  <->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) )
54 fveq2 6191 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( # `  ( `' f " {
0 } ) )  =  ( # `  (/) ) )
55 hash0 13158 . . . . . . . . . . 11  |-  ( # `  (/) )  =  0
5654, 55syl6eq 2672 . . . . . . . . . 10  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( # `  ( `' f " {
0 } ) )  =  0 )
5756breq1d 4663 . . . . . . . . 9  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( # `  ( `' f " { 0 } ) )  <_  (deg `  f
)  <->  0  <_  (deg `  f ) ) )
5853, 57bitr3d 270 . . . . . . . 8  |-  ( ( `' f " {
0 } )  =  (/)  ->  ( ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) )  <->  0  <_  (deg
`  f ) ) )
5949, 58syl5ibrcom 237 . . . . . . 7  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
( ( `' f
" { 0 } )  =  (/)  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) )
6046, 59syld 47 . . . . . 6  |-  ( f  e.  ( (Poly `  CC )  \  { 0p } )  -> 
( (deg `  f
)  =  0  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
6160rgen 2922 . . . . 5  |-  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  0  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )
62 fveq2 6191 . . . . . . . . 9  |-  ( f  =  g  ->  (deg `  f )  =  (deg
`  g ) )
6362eqeq1d 2624 . . . . . . . 8  |-  ( f  =  g  ->  (
(deg `  f )  =  d  <->  (deg `  g )  =  d ) )
64 cnveq 5296 . . . . . . . . . . 11  |-  ( f  =  g  ->  `' f  =  `' g
)
6564imaeq1d 5465 . . . . . . . . . 10  |-  ( f  =  g  ->  ( `' f " {
0 } )  =  ( `' g " { 0 } ) )
6665eleq1d 2686 . . . . . . . . 9  |-  ( f  =  g  ->  (
( `' f " { 0 } )  e.  Fin  <->  ( `' g " { 0 } )  e.  Fin )
)
6765fveq2d 6195 . . . . . . . . . 10  |-  ( f  =  g  ->  ( # `
 ( `' f
" { 0 } ) )  =  (
# `  ( `' g " { 0 } ) ) )
6867, 62breq12d 4666 . . . . . . . . 9  |-  ( f  =  g  ->  (
( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )  <->  (
# `  ( `' g " { 0 } ) )  <_  (deg `  g ) ) )
6966, 68anbi12d 747 . . . . . . . 8  |-  ( f  =  g  ->  (
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
)  <->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
7063, 69imbi12d 334 . . . . . . 7  |-  ( f  =  g  ->  (
( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  ( (deg `  g )  =  d  ->  ( ( `' g " { 0 } )  e.  Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )
7170cbvralv 3171 . . . . . 6  |-  ( A. f  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  <->  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
7249ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  0  <_  (deg
`  f ) )
7372, 58syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =  (/)  ->  ( ( `' f " { 0 } )  e.  Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) )
7473a1dd 50 . . . . . . . . . 10  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =  (/)  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
75 n0 3931 . . . . . . . . . . 11  |-  ( ( `' f " {
0 } )  =/=  (/) 
<->  E. x  x  e.  ( `' f " { 0 } ) )
76 eqid 2622 . . . . . . . . . . . . . 14  |-  ( `' f " { 0 } )  =  ( `' f " {
0 } )
77 simplll 798 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  d  e.  NN0 )
78 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  f  e.  ( (Poly `  CC )  \  { 0p }
) )
79 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  (deg `  f
)  =  ( d  +  1 ) )
80 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  x  e.  ( `' f " {
0 } ) )
81 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) )
8276, 77, 78, 79, 80, 81fta1lem 24062 . . . . . . . . . . . . 13  |-  ( ( ( ( d  e. 
NN0  /\  f  e.  ( (Poly `  CC )  \  { 0p }
) )  /\  (deg `  f )  =  ( d  +  1 ) )  /\  ( x  e.  ( `' f
" { 0 } )  /\  A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) ) ) )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) )
8382exp32 631 . . . . . . . . . . . 12  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( x  e.  ( `' f " { 0 } )  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8483exlimdv 1861 . . . . . . . . . . 11  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( E. x  x  e.  ( `' f " {
0 } )  -> 
( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8575, 84syl5bi 232 . . . . . . . . . 10  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( ( `' f " {
0 } )  =/=  (/)  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8674, 85pm2.61dne 2880 . . . . . . . . 9  |-  ( ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  /\  (deg `  f )  =  ( d  +  1 ) )  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) )
8786ex 450 . . . . . . . 8  |-  ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  ->  ( (deg `  f )  =  ( d  +  1 )  ->  ( A. g  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  g )  =  d  ->  ( ( `' g " {
0 } )  e. 
Fin  /\  ( # `  ( `' g " {
0 } ) )  <_  (deg `  g
) ) )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) ) )
8887com23 86 . . . . . . 7  |-  ( ( d  e.  NN0  /\  f  e.  ( (Poly `  CC )  \  {
0p } ) )  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  (
(deg `  f )  =  ( d  +  1 )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) ) ) )
8988ralrimdva 2969 . . . . . 6  |-  ( d  e.  NN0  ->  ( A. g  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  g
)  =  d  -> 
( ( `' g
" { 0 } )  e.  Fin  /\  ( # `  ( `' g " { 0 } ) )  <_ 
(deg `  g )
) )  ->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
9071, 89syl5bi 232 . . . . 5  |-  ( d  e.  NN0  ->  ( A. f  e.  ( (Poly `  CC )  \  {
0p } ) ( (deg `  f
)  =  d  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  ( d  +  1 )  ->  ( ( `' f " {
0 } )  e. 
Fin  /\  ( # `  ( `' f " {
0 } ) )  <_  (deg `  f
) ) ) ) )
916, 9, 12, 15, 61, 90nn0ind 11472 . . . 4  |-  ( (deg
`  F )  e. 
NN0  ->  A. f  e.  ( (Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
923, 91syl 17 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  ->  A. f  e.  (
(Poly `  CC )  \  { 0p }
) ( (deg `  f )  =  (deg
`  F )  -> 
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) ) )
93 plyssc 23956 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
9493sseli 3599 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
95 eldifsn 4317 . . . . 5  |-  ( F  e.  ( (Poly `  CC )  \  { 0p } )  <->  ( F  e.  (Poly `  CC )  /\  F  =/=  0p ) )
96 fveq2 6191 . . . . . . . 8  |-  ( f  =  F  ->  (deg `  f )  =  (deg
`  F ) )
9796eqeq1d 2624 . . . . . . 7  |-  ( f  =  F  ->  (
(deg `  f )  =  (deg `  F )  <->  (deg
`  F )  =  (deg `  F )
) )
98 cnveq 5296 . . . . . . . . . . 11  |-  ( f  =  F  ->  `' f  =  `' F
)
9998imaeq1d 5465 . . . . . . . . . 10  |-  ( f  =  F  ->  ( `' f " {
0 } )  =  ( `' F " { 0 } ) )
100 fta1.1 . . . . . . . . . 10  |-  R  =  ( `' F " { 0 } )
10199, 100syl6eqr 2674 . . . . . . . . 9  |-  ( f  =  F  ->  ( `' f " {
0 } )  =  R )
102101eleq1d 2686 . . . . . . . 8  |-  ( f  =  F  ->  (
( `' f " { 0 } )  e.  Fin  <->  R  e.  Fin ) )
103101fveq2d 6195 . . . . . . . . 9  |-  ( f  =  F  ->  ( # `
 ( `' f
" { 0 } ) )  =  (
# `  R )
)
104103, 96breq12d 4666 . . . . . . . 8  |-  ( f  =  F  ->  (
( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )  <->  (
# `  R )  <_  (deg `  F )
) )
105102, 104anbi12d 747 . . . . . . 7  |-  ( f  =  F  ->  (
( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
)  <->  ( R  e. 
Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) )
10697, 105imbi12d 334 . . . . . 6  |-  ( f  =  F  ->  (
( (deg `  f
)  =  (deg `  F )  ->  (
( `' f " { 0 } )  e.  Fin  /\  ( # `
 ( `' f
" { 0 } ) )  <_  (deg `  f ) ) )  <-> 
( (deg `  F
)  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `
 R )  <_ 
(deg `  F )
) ) ) )
107106rspcv 3305 . . . . 5  |-  ( F  e.  ( (Poly `  CC )  \  { 0p } )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
10895, 107sylbir 225 . . . 4  |-  ( ( F  e.  (Poly `  CC )  /\  F  =/=  0p )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
10994, 108sylan 488 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
( A. f  e.  ( (Poly `  CC )  \  { 0p } ) ( (deg
`  f )  =  (deg `  F )  ->  ( ( `' f
" { 0 } )  e.  Fin  /\  ( # `  ( `' f " { 0 } ) )  <_ 
(deg `  f )
) )  ->  (
(deg `  F )  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) ) ) )
11092, 109mpd 15 . 2  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
( (deg `  F
)  =  (deg `  F )  ->  ( R  e.  Fin  /\  ( # `
 R )  <_ 
(deg `  F )
) ) )
1111, 110mpi 20 1  |-  ( ( F  e.  (Poly `  S )  /\  F  =/=  0p )  -> 
( R  e.  Fin  /\  ( # `  R
)  <_  (deg `  F
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075   NN0cn0 11292   #chash 13117   0pc0p 23436  Polycply 23940  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  vieta1lem2  24066  vieta1  24067  plyexmo  24068  aannenlem1  24083  aalioulem2  24088  basellem4  24810  basellem5  24811  dchrfi  24980
  Copyright terms: Public domain W3C validator