MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymul0or Structured version   Visualization version   Unicode version

Theorem plymul0or 24036
Description: Polynomial multiplication has no zero divisors. (Contributed by Mario Carneiro, 26-Jul-2014.)
Assertion
Ref Expression
plymul0or  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( F  oF  x.  G
)  =  0p  <-> 
( F  =  0p  \/  G  =  0p ) ) )

Proof of Theorem plymul0or
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dgrcl 23989 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
2 dgrcl 23989 . . . . . . 7  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
3 nn0addcl 11328 . . . . . . 7  |-  ( ( (deg `  F )  e.  NN0  /\  (deg `  G )  e.  NN0 )  ->  ( (deg `  F )  +  (deg
`  G ) )  e.  NN0 )
41, 2, 3syl2an 494 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (deg `  F )  +  (deg
`  G ) )  e.  NN0 )
5 c0ex 10034 . . . . . . 7  |-  0  e.  _V
65fvconst2 6469 . . . . . 6  |-  ( ( (deg `  F )  +  (deg `  G )
)  e.  NN0  ->  ( ( NN0  X.  {
0 } ) `  ( (deg `  F )  +  (deg `  G )
) )  =  0 )
74, 6syl 17 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( NN0  X.  { 0 } ) `  ( (deg
`  F )  +  (deg `  G )
) )  =  0 )
8 fveq2 6191 . . . . . . . 8  |-  ( ( F  oF  x.  G )  =  0p  ->  (coeff `  ( F  oF  x.  G
) )  =  (coeff `  0p ) )
9 coe0 24012 . . . . . . . 8  |-  (coeff ` 
0p )  =  ( NN0  X.  {
0 } )
108, 9syl6eq 2672 . . . . . . 7  |-  ( ( F  oF  x.  G )  =  0p  ->  (coeff `  ( F  oF  x.  G
) )  =  ( NN0  X.  { 0 } ) )
1110fveq1d 6193 . . . . . 6  |-  ( ( F  oF  x.  G )  =  0p  ->  ( (coeff `  ( F  oF  x.  G ) ) `
 ( (deg `  F )  +  (deg
`  G ) ) )  =  ( ( NN0  X.  { 0 } ) `  (
(deg `  F )  +  (deg `  G )
) ) )
1211eqeq1d 2624 . . . . 5  |-  ( ( F  oF  x.  G )  =  0p  ->  ( (
(coeff `  ( F  oF  x.  G
) ) `  (
(deg `  F )  +  (deg `  G )
) )  =  0  <-> 
( ( NN0  X.  { 0 } ) `
 ( (deg `  F )  +  (deg
`  G ) ) )  =  0 ) )
137, 12syl5ibrcom 237 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( F  oF  x.  G
)  =  0p  ->  ( (coeff `  ( F  oF  x.  G ) ) `  ( (deg `  F )  +  (deg `  G )
) )  =  0 ) )
14 eqid 2622 . . . . . . 7  |-  (coeff `  F )  =  (coeff `  F )
15 eqid 2622 . . . . . . 7  |-  (coeff `  G )  =  (coeff `  G )
16 eqid 2622 . . . . . . 7  |-  (deg `  F )  =  (deg
`  F )
17 eqid 2622 . . . . . . 7  |-  (deg `  G )  =  (deg
`  G )
1814, 15, 16, 17coemulhi 24010 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  oF  x.  G ) ) `
 ( (deg `  F )  +  (deg
`  G ) ) )  =  ( ( (coeff `  F ) `  (deg `  F )
)  x.  ( (coeff `  G ) `  (deg `  G ) ) ) )
1918eqeq1d 2624 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (
(coeff `  ( F  oF  x.  G
) ) `  (
(deg `  F )  +  (deg `  G )
) )  =  0  <-> 
( ( (coeff `  F ) `  (deg `  F ) )  x.  ( (coeff `  G
) `  (deg `  G
) ) )  =  0 ) )
2014coef3 23988 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
2120adantr 481 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  (coeff `  F
) : NN0 --> CC )
221adantr 481 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  (deg `  F
)  e.  NN0 )
2321, 22ffvelrnd 6360 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  F ) `  (deg `  F ) )  e.  CC )
2415coef3 23988 . . . . . . . 8  |-  ( G  e.  (Poly `  S
)  ->  (coeff `  G
) : NN0 --> CC )
2524adantl 482 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  (coeff `  G
) : NN0 --> CC )
262adantl 482 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  (deg `  G
)  e.  NN0 )
2725, 26ffvelrnd 6360 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  G ) `  (deg `  G ) )  e.  CC )
2823, 27mul0ord 10677 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (
( (coeff `  F
) `  (deg `  F
) )  x.  (
(coeff `  G ) `  (deg `  G )
) )  =  0  <-> 
( ( (coeff `  F ) `  (deg `  F ) )  =  0  \/  ( (coeff `  G ) `  (deg `  G ) )  =  0 ) ) )
2919, 28bitrd 268 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (
(coeff `  ( F  oF  x.  G
) ) `  (
(deg `  F )  +  (deg `  G )
) )  =  0  <-> 
( ( (coeff `  F ) `  (deg `  F ) )  =  0  \/  ( (coeff `  G ) `  (deg `  G ) )  =  0 ) ) )
3013, 29sylibd 229 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( F  oF  x.  G
)  =  0p  ->  ( ( (coeff `  F ) `  (deg `  F ) )  =  0  \/  ( (coeff `  G ) `  (deg `  G ) )  =  0 ) ) )
3116, 14dgreq0 24021 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  ( F  =  0p  <->  ( (coeff `  F ) `  (deg `  F ) )  =  0 ) )
3231adantr 481 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( F  =  0p  <->  ( (coeff `  F ) `  (deg `  F ) )  =  0 ) )
3317, 15dgreq0 24021 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  ( G  =  0p  <->  ( (coeff `  G ) `  (deg `  G ) )  =  0 ) )
3433adantl 482 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( G  =  0p  <->  ( (coeff `  G ) `  (deg `  G ) )  =  0 ) )
3532, 34orbi12d 746 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( F  =  0p  \/  G  =  0p )  <->  ( (
(coeff `  F ) `  (deg `  F )
)  =  0  \/  ( (coeff `  G
) `  (deg `  G
) )  =  0 ) ) )
3630, 35sylibrd 249 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( F  oF  x.  G
)  =  0p  ->  ( F  =  0p  \/  G  =  0p ) ) )
37 cnex 10017 . . . . . . 7  |-  CC  e.  _V
3837a1i 11 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  CC  e.  _V )
39 plyf 23954 . . . . . . 7  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
4039adantl 482 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  G : CC
--> CC )
41 0cnd 10033 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  0  e.  CC )
42 mul02 10214 . . . . . . 7  |-  ( x  e.  CC  ->  (
0  x.  x )  =  0 )
4342adantl 482 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  x  e.  CC )  ->  ( 0  x.  x )  =  0 )
4438, 40, 41, 41, 43caofid2 6928 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( CC  X.  { 0 } )  oF  x.  G )  =  ( CC  X.  { 0 } ) )
45 id 22 . . . . . . . 8  |-  ( F  =  0p  ->  F  =  0p
)
46 df-0p 23437 . . . . . . . 8  |-  0p  =  ( CC  X.  { 0 } )
4745, 46syl6eq 2672 . . . . . . 7  |-  ( F  =  0p  ->  F  =  ( CC  X.  { 0 } ) )
4847oveq1d 6665 . . . . . 6  |-  ( F  =  0p  -> 
( F  oF  x.  G )  =  ( ( CC  X.  { 0 } )  oF  x.  G
) )
4948eqeq1d 2624 . . . . 5  |-  ( F  =  0p  -> 
( ( F  oF  x.  G )  =  ( CC  X.  { 0 } )  <-> 
( ( CC  X.  { 0 } )  oF  x.  G
)  =  ( CC 
X.  { 0 } ) ) )
5044, 49syl5ibrcom 237 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( F  =  0p  -> 
( F  oF  x.  G )  =  ( CC  X.  {
0 } ) ) )
51 plyf 23954 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
5251adantr 481 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  F : CC
--> CC )
53 mul01 10215 . . . . . . 7  |-  ( x  e.  CC  ->  (
x  x.  0 )  =  0 )
5453adantl 482 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  x  e.  CC )  ->  ( x  x.  0 )  =  0 )
5538, 52, 41, 41, 54caofid1 6927 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( F  oF  x.  ( CC  X.  { 0 } ) )  =  ( CC  X.  { 0 } ) )
56 id 22 . . . . . . . 8  |-  ( G  =  0p  ->  G  =  0p
)
5756, 46syl6eq 2672 . . . . . . 7  |-  ( G  =  0p  ->  G  =  ( CC  X.  { 0 } ) )
5857oveq2d 6666 . . . . . 6  |-  ( G  =  0p  -> 
( F  oF  x.  G )  =  ( F  oF  x.  ( CC  X.  { 0 } ) ) )
5958eqeq1d 2624 . . . . 5  |-  ( G  =  0p  -> 
( ( F  oF  x.  G )  =  ( CC  X.  { 0 } )  <-> 
( F  oF  x.  ( CC  X.  { 0 } ) )  =  ( CC 
X.  { 0 } ) ) )
6055, 59syl5ibrcom 237 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( G  =  0p  -> 
( F  oF  x.  G )  =  ( CC  X.  {
0 } ) ) )
6150, 60jaod 395 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( F  =  0p  \/  G  =  0p )  ->  ( F  oF  x.  G
)  =  ( CC 
X.  { 0 } ) ) )
6246eqeq2i 2634 . . 3  |-  ( ( F  oF  x.  G )  =  0p  <->  ( F  oF  x.  G )  =  ( CC  X.  { 0 } ) )
6361, 62syl6ibr 242 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( F  =  0p  \/  G  =  0p )  ->  ( F  oF  x.  G
)  =  0p ) )
6436, 63impbid 202 1  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( F  oF  x.  G
)  =  0p  <-> 
( F  =  0p  \/  G  =  0p ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   0cc0 9936    + caddc 9939    x. cmul 9941   NN0cn0 11292   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  plydiveu  24053  quotcan  24064  vieta1lem1  24065  vieta1lem2  24066
  Copyright terms: Public domain W3C validator