MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vieta1lem1 Structured version   Visualization version   Unicode version

Theorem vieta1lem1 24065
Description: Lemma for vieta1 24067. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
vieta1.1  |-  A  =  (coeff `  F )
vieta1.2  |-  N  =  (deg `  F )
vieta1.3  |-  R  =  ( `' F " { 0 } )
vieta1.4  |-  ( ph  ->  F  e.  (Poly `  S ) )
vieta1.5  |-  ( ph  ->  ( # `  R
)  =  N )
vieta1lem.6  |-  ( ph  ->  D  e.  NN )
vieta1lem.7  |-  ( ph  ->  ( D  +  1 )  =  N )
vieta1lem.8  |-  ( ph  ->  A. f  e.  (Poly `  CC ) ( ( D  =  (deg `  f )  /\  ( # `
 ( `' f
" { 0 } ) )  =  (deg
`  f ) )  ->  sum_ x  e.  ( `' f " {
0 } ) x  =  -u ( ( (coeff `  f ) `  (
(deg `  f )  -  1 ) )  /  ( (coeff `  f ) `  (deg `  f ) ) ) ) )
vieta1lem.9  |-  Q  =  ( F quot  ( Xp  oF  -  ( CC  X.  { z } ) ) )
Assertion
Ref Expression
vieta1lem1  |-  ( (
ph  /\  z  e.  R )  ->  ( Q  e.  (Poly `  CC )  /\  D  =  (deg
`  Q ) ) )
Distinct variable groups:    D, f    f, F    z, f, N   
x, f, Q    R, f    x, z, R    A, f, z    ph, x, z
Allowed substitution hints:    ph( f)    A( x)    D( x, z)    Q( z)    S( x, z, f)    F( x, z)    N( x)

Proof of Theorem vieta1lem1
StepHypRef Expression
1 vieta1lem.9 . . 3  |-  Q  =  ( F quot  ( Xp  oF  -  ( CC  X.  { z } ) ) )
2 plyssc 23956 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
3 vieta1.4 . . . . . 6  |-  ( ph  ->  F  e.  (Poly `  S ) )
43adantr 481 . . . . 5  |-  ( (
ph  /\  z  e.  R )  ->  F  e.  (Poly `  S )
)
52, 4sseldi 3601 . . . 4  |-  ( (
ph  /\  z  e.  R )  ->  F  e.  (Poly `  CC )
)
6 vieta1.3 . . . . . . . . 9  |-  R  =  ( `' F " { 0 } )
7 cnvimass 5485 . . . . . . . . 9  |-  ( `' F " { 0 } )  C_  dom  F
86, 7eqsstri 3635 . . . . . . . 8  |-  R  C_  dom  F
9 plyf 23954 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
103, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  F : CC --> CC )
11 fdm 6051 . . . . . . . . 9  |-  ( F : CC --> CC  ->  dom 
F  =  CC )
1210, 11syl 17 . . . . . . . 8  |-  ( ph  ->  dom  F  =  CC )
138, 12syl5sseq 3653 . . . . . . 7  |-  ( ph  ->  R  C_  CC )
1413sselda 3603 . . . . . 6  |-  ( (
ph  /\  z  e.  R )  ->  z  e.  CC )
15 eqid 2622 . . . . . . 7  |-  ( Xp  oF  -  ( CC  X.  { z } ) )  =  ( Xp  oF  -  ( CC 
X.  { z } ) )
1615plyremlem 24059 . . . . . 6  |-  ( z  e.  CC  ->  (
( Xp  oF  -  ( CC 
X.  { z } ) )  e.  (Poly `  CC )  /\  (deg `  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  =  1  /\  ( `' ( Xp  oF  -  ( CC 
X.  { z } ) ) " {
0 } )  =  { z } ) )
1714, 16syl 17 . . . . 5  |-  ( (
ph  /\  z  e.  R )  ->  (
( Xp  oF  -  ( CC 
X.  { z } ) )  e.  (Poly `  CC )  /\  (deg `  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  =  1  /\  ( `' ( Xp  oF  -  ( CC 
X.  { z } ) ) " {
0 } )  =  { z } ) )
1817simp1d 1073 . . . 4  |-  ( (
ph  /\  z  e.  R )  ->  (
Xp  oF  -  ( CC  X.  { z } ) )  e.  (Poly `  CC ) )
1917simp2d 1074 . . . . . 6  |-  ( (
ph  /\  z  e.  R )  ->  (deg `  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  =  1 )
20 ax-1ne0 10005 . . . . . . 7  |-  1  =/=  0
2120a1i 11 . . . . . 6  |-  ( (
ph  /\  z  e.  R )  ->  1  =/=  0 )
2219, 21eqnetrd 2861 . . . . 5  |-  ( (
ph  /\  z  e.  R )  ->  (deg `  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  =/=  0 )
23 fveq2 6191 . . . . . . 7  |-  ( ( Xp  oF  -  ( CC  X.  { z } ) )  =  0p  ->  (deg `  (
Xp  oF  -  ( CC  X.  { z } ) ) )  =  (deg
`  0p ) )
24 dgr0 24018 . . . . . . 7  |-  (deg ` 
0p )  =  0
2523, 24syl6eq 2672 . . . . . 6  |-  ( ( Xp  oF  -  ( CC  X.  { z } ) )  =  0p  ->  (deg `  (
Xp  oF  -  ( CC  X.  { z } ) ) )  =  0 )
2625necon3i 2826 . . . . 5  |-  ( (deg
`  ( Xp  oF  -  ( CC  X.  { z } ) ) )  =/=  0  ->  ( Xp  oF  -  ( CC  X.  { z } ) )  =/=  0p )
2722, 26syl 17 . . . 4  |-  ( (
ph  /\  z  e.  R )  ->  (
Xp  oF  -  ( CC  X.  { z } ) )  =/=  0p )
28 quotcl2 24057 . . . 4  |-  ( ( F  e.  (Poly `  CC )  /\  (
Xp  oF  -  ( CC  X.  { z } ) )  e.  (Poly `  CC )  /\  (
Xp  oF  -  ( CC  X.  { z } ) )  =/=  0p )  ->  ( F quot  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  e.  (Poly `  CC )
)
295, 18, 27, 28syl3anc 1326 . . 3  |-  ( (
ph  /\  z  e.  R )  ->  ( F quot  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  e.  (Poly `  CC )
)
301, 29syl5eqel 2705 . 2  |-  ( (
ph  /\  z  e.  R )  ->  Q  e.  (Poly `  CC )
)
31 ax-1cn 9994 . . . 4  |-  1  e.  CC
3231a1i 11 . . 3  |-  ( (
ph  /\  z  e.  R )  ->  1  e.  CC )
33 vieta1lem.6 . . . . 5  |-  ( ph  ->  D  e.  NN )
3433nncnd 11036 . . . 4  |-  ( ph  ->  D  e.  CC )
3534adantr 481 . . 3  |-  ( (
ph  /\  z  e.  R )  ->  D  e.  CC )
36 dgrcl 23989 . . . . 5  |-  ( Q  e.  (Poly `  CC )  ->  (deg `  Q
)  e.  NN0 )
3730, 36syl 17 . . . 4  |-  ( (
ph  /\  z  e.  R )  ->  (deg `  Q )  e.  NN0 )
3837nn0cnd 11353 . . 3  |-  ( (
ph  /\  z  e.  R )  ->  (deg `  Q )  e.  CC )
39 addcom 10222 . . . . 5  |-  ( ( 1  e.  CC  /\  D  e.  CC )  ->  ( 1  +  D
)  =  ( D  +  1 ) )
4031, 35, 39sylancr 695 . . . 4  |-  ( (
ph  /\  z  e.  R )  ->  (
1  +  D )  =  ( D  + 
1 ) )
41 vieta1lem.7 . . . . . . 7  |-  ( ph  ->  ( D  +  1 )  =  N )
42 vieta1.2 . . . . . . 7  |-  N  =  (deg `  F )
4341, 42syl6eq 2672 . . . . . 6  |-  ( ph  ->  ( D  +  1 )  =  (deg `  F ) )
4443adantr 481 . . . . 5  |-  ( (
ph  /\  z  e.  R )  ->  ( D  +  1 )  =  (deg `  F
) )
456eleq2i 2693 . . . . . . . . . 10  |-  ( z  e.  R  <->  z  e.  ( `' F " { 0 } ) )
46 ffn 6045 . . . . . . . . . . . 12  |-  ( F : CC --> CC  ->  F  Fn  CC )
4710, 46syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  CC )
48 fniniseg 6338 . . . . . . . . . . 11  |-  ( F  Fn  CC  ->  (
z  e.  ( `' F " { 0 } )  <->  ( z  e.  CC  /\  ( F `
 z )  =  0 ) ) )
4947, 48syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  ( `' F " { 0 } )  <->  ( z  e.  CC  /\  ( F `
 z )  =  0 ) ) )
5045, 49syl5bb 272 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  R  <->  ( z  e.  CC  /\  ( F `  z )  =  0 ) ) )
5150simplbda 654 . . . . . . . 8  |-  ( (
ph  /\  z  e.  R )  ->  ( F `  z )  =  0 )
5215facth 24061 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  z  e.  CC  /\  ( F `
 z )  =  0 )  ->  F  =  ( ( Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  ( F quot  ( Xp  oF  -  ( CC 
X.  { z } ) ) ) ) )
534, 14, 51, 52syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  z  e.  R )  ->  F  =  ( ( Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  ( F quot  ( Xp  oF  -  ( CC 
X.  { z } ) ) ) ) )
541oveq2i 6661 . . . . . . 7  |-  ( ( Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  Q )  =  ( ( Xp  oF  -  ( CC 
X.  { z } ) )  oF  x.  ( F quot  (
Xp  oF  -  ( CC  X.  { z } ) ) ) )
5553, 54syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  z  e.  R )  ->  F  =  ( ( Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  Q ) )
5655fveq2d 6195 . . . . 5  |-  ( (
ph  /\  z  e.  R )  ->  (deg `  F )  =  (deg
`  ( ( Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  Q ) ) )
5733peano2nnd 11037 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D  +  1 )  e.  NN )
5841, 57eqeltrrd 2702 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
5958nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
6042, 59syl5eqner 2869 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  F )  =/=  0 )
61 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( F  =  0p  -> 
(deg `  F )  =  (deg `  0p
) )
6261, 24syl6eq 2672 . . . . . . . . . . . . 13  |-  ( F  =  0p  -> 
(deg `  F )  =  0 )
6362necon3i 2826 . . . . . . . . . . . 12  |-  ( (deg
`  F )  =/=  0  ->  F  =/=  0p )
6460, 63syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  =/=  0p )
6564adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  R )  ->  F  =/=  0p )
6655, 65eqnetrrd 2862 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  R )  ->  (
( Xp  oF  -  ( CC 
X.  { z } ) )  oF  x.  Q )  =/=  0p )
67 plymul0or 24036 . . . . . . . . . . 11  |-  ( ( ( Xp  oF  -  ( CC 
X.  { z } ) )  e.  (Poly `  CC )  /\  Q  e.  (Poly `  CC )
)  ->  ( (
( Xp  oF  -  ( CC 
X.  { z } ) )  oF  x.  Q )  =  0p  <->  ( (
Xp  oF  -  ( CC  X.  { z } ) )  =  0p  \/  Q  =  0p ) ) )
6818, 30, 67syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  R )  ->  (
( ( Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  Q )  =  0p  <->  ( (
Xp  oF  -  ( CC  X.  { z } ) )  =  0p  \/  Q  =  0p ) ) )
6968necon3abid 2830 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  R )  ->  (
( ( Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  Q )  =/=  0p  <->  -.  (
( Xp  oF  -  ( CC 
X.  { z } ) )  =  0p  \/  Q  =  0p ) ) )
7066, 69mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  z  e.  R )  ->  -.  ( ( Xp  oF  -  ( CC  X.  { z } ) )  =  0p  \/  Q  =  0p ) )
71 neanior 2886 . . . . . . . 8  |-  ( ( ( Xp  oF  -  ( CC 
X.  { z } ) )  =/=  0p  /\  Q  =/=  0p )  <->  -.  (
( Xp  oF  -  ( CC 
X.  { z } ) )  =  0p  \/  Q  =  0p ) )
7270, 71sylibr 224 . . . . . . 7  |-  ( (
ph  /\  z  e.  R )  ->  (
( Xp  oF  -  ( CC 
X.  { z } ) )  =/=  0p  /\  Q  =/=  0p ) )
7372simprd 479 . . . . . 6  |-  ( (
ph  /\  z  e.  R )  ->  Q  =/=  0p )
74 eqid 2622 . . . . . . 7  |-  (deg `  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  =  (deg `  ( Xp  oF  -  ( CC  X.  { z } ) ) )
75 eqid 2622 . . . . . . 7  |-  (deg `  Q )  =  (deg
`  Q )
7674, 75dgrmul 24026 . . . . . 6  |-  ( ( ( ( Xp  oF  -  ( CC  X.  { z } ) )  e.  (Poly `  CC )  /\  (
Xp  oF  -  ( CC  X.  { z } ) )  =/=  0p )  /\  ( Q  e.  (Poly `  CC )  /\  Q  =/=  0p ) )  -> 
(deg `  ( (
Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  Q ) )  =  ( (deg `  (
Xp  oF  -  ( CC  X.  { z } ) ) )  +  (deg
`  Q ) ) )
7718, 27, 30, 73, 76syl22anc 1327 . . . . 5  |-  ( (
ph  /\  z  e.  R )  ->  (deg `  ( ( Xp  oF  -  ( CC  X.  { z } ) )  oF  x.  Q ) )  =  ( (deg `  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  +  (deg `  Q )
) )
7844, 56, 773eqtrd 2660 . . . 4  |-  ( (
ph  /\  z  e.  R )  ->  ( D  +  1 )  =  ( (deg `  ( Xp  oF  -  ( CC 
X.  { z } ) ) )  +  (deg `  Q )
) )
7919oveq1d 6665 . . . 4  |-  ( (
ph  /\  z  e.  R )  ->  (
(deg `  ( Xp  oF  -  ( CC  X.  { z } ) ) )  +  (deg `  Q )
)  =  ( 1  +  (deg `  Q
) ) )
8040, 78, 793eqtrd 2660 . . 3  |-  ( (
ph  /\  z  e.  R )  ->  (
1  +  D )  =  ( 1  +  (deg `  Q )
) )
8132, 35, 38, 80addcanad 10241 . 2  |-  ( (
ph  /\  z  e.  R )  ->  D  =  (deg `  Q )
)
8230, 81jca 554 1  |-  ( (
ph  /\  z  e.  R )  ->  ( Q  e.  (Poly `  CC )  /\  D  =  (deg
`  Q ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {csn 4177    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   #chash 13117   sum_csu 14416   0pc0p 23436  Polycply 23940   Xpcidp 23941  coeffccoe 23942  degcdgr 23943   quot cquot 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  vieta1lem2  24066
  Copyright terms: Public domain W3C validator