MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem5 Structured version   Visualization version   Unicode version

Theorem prmgaplem5 15759
Description: Lemma for prmgap 15763: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
prmgaplem5  |-  ( N  e.  ( ZZ>= `  3
)  ->  E. p  e.  Prime  ( p  < 
N  /\  A. z  e.  ( ( p  + 
1 )..^ N ) z  e/  Prime )
)
Distinct variable group:    N, p, z

Proof of Theorem prmgaplem5
Dummy variables  q 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrabi 3359 . . . 4  |-  ( r  e.  { q  e. 
Prime  |  q  <  N }  ->  r  e.  Prime )
21ad2antlr 763 . . 3  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  A. z  e.  { q  e.  Prime  |  q  <  N } z  <_ 
r )  ->  r  e.  Prime )
3 breq1 4656 . . . . 5  |-  ( p  =  r  ->  (
p  <  N  <->  r  <  N ) )
4 oveq1 6657 . . . . . . 7  |-  ( p  =  r  ->  (
p  +  1 )  =  ( r  +  1 ) )
54oveq1d 6665 . . . . . 6  |-  ( p  =  r  ->  (
( p  +  1 )..^ N )  =  ( ( r  +  1 )..^ N ) )
65raleqdv 3144 . . . . 5  |-  ( p  =  r  ->  ( A. z  e.  (
( p  +  1 )..^ N ) z  e/  Prime  <->  A. z  e.  ( ( r  +  1 )..^ N ) z  e/  Prime ) )
73, 6anbi12d 747 . . . 4  |-  ( p  =  r  ->  (
( p  <  N  /\  A. z  e.  ( ( p  +  1 )..^ N ) z  e/  Prime )  <->  ( r  <  N  /\  A. z  e.  ( ( r  +  1 )..^ N ) z  e/  Prime )
) )
87adantl 482 . . 3  |-  ( ( ( ( N  e.  ( ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  <  N } )  /\  A. z  e.  { q  e.  Prime  |  q  <  N } z  <_ 
r )  /\  p  =  r )  -> 
( ( p  < 
N  /\  A. z  e.  ( ( p  + 
1 )..^ N ) z  e/  Prime )  <->  ( r  <  N  /\  A. z  e.  ( ( r  +  1 )..^ N ) z  e/  Prime ) ) )
9 breq1 4656 . . . . . . 7  |-  ( q  =  r  ->  (
q  <  N  <->  r  <  N ) )
109elrab 3363 . . . . . 6  |-  ( r  e.  { q  e. 
Prime  |  q  <  N }  <->  ( r  e. 
Prime  /\  r  <  N
) )
1110simprbi 480 . . . . 5  |-  ( r  e.  { q  e. 
Prime  |  q  <  N }  ->  r  <  N )
1211ad2antlr 763 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  A. z  e.  { q  e.  Prime  |  q  <  N } z  <_ 
r )  ->  r  <  N )
13 elfzo2 12473 . . . . . . . 8  |-  ( z  e.  ( ( r  +  1 )..^ N
)  <->  ( z  e.  ( ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) )
14 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Prime  /\  (
z  e.  ( ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  < 
N ) )  -> 
z  e.  Prime )
15 simpr3 1069 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Prime  /\  (
z  e.  ( ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  < 
N ) )  -> 
z  <  N )
16 breq1 4656 . . . . . . . . . . . . . . 15  |-  ( q  =  z  ->  (
q  <  N  <->  z  <  N ) )
1716elrab 3363 . . . . . . . . . . . . . 14  |-  ( z  e.  { q  e. 
Prime  |  q  <  N }  <->  ( z  e. 
Prime  /\  z  <  N
) )
1814, 15, 17sylanbrc 698 . . . . . . . . . . . . 13  |-  ( ( z  e.  Prime  /\  (
z  e.  ( ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  < 
N ) )  -> 
z  e.  { q  e.  Prime  |  q  <  N } )
1918adantrl 752 . . . . . . . . . . . 12  |-  ( ( z  e.  Prime  /\  (
( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  (
ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) ) )  ->  z  e.  {
q  e.  Prime  |  q  <  N } )
20 eluz2 11693 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ZZ>= `  (
r  +  1 ) )  <->  ( ( r  +  1 )  e.  ZZ  /\  z  e.  ZZ  /\  ( r  +  1 )  <_ 
z ) )
21 prmz 15389 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( r  e.  Prime  ->  r  e.  ZZ )
22 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( r  e.  ZZ  /\  z  e.  ZZ )  ->  ( r  <  z  <->  ( r  +  1 )  <_  z ) )
2321, 22sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( r  e.  Prime  /\  z  e.  ZZ )  ->  (
r  <  z  <->  ( r  +  1 )  <_ 
z ) )
24 prmnn 15388 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( r  e.  Prime  ->  r  e.  NN )
2524nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( r  e.  Prime  ->  r  e.  RR )
26 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  ZZ  ->  z  e.  RR )
27 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( r  e.  RR  /\  z  e.  RR )  ->  ( r  <  z  <->  -.  z  <_  r )
)
2827biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( r  e.  RR  /\  z  e.  RR )  ->  ( r  <  z  ->  -.  z  <_  r
) )
2925, 26, 28syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( r  e.  Prime  /\  z  e.  ZZ )  ->  (
r  <  z  ->  -.  z  <_  r )
)
30 pm2.21 120 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  z  <_  r  ->  ( z  <_  r  ->  z  e/  Prime ) )
3129, 30syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( r  e.  Prime  /\  z  e.  ZZ )  ->  (
r  <  z  ->  ( z  <_  r  ->  z  e/  Prime ) ) )
3223, 31sylbird 250 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e.  Prime  /\  z  e.  ZZ )  ->  (
( r  +  1 )  <_  z  ->  ( z  <_  r  ->  z  e/  Prime ) ) )
3332expcom 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ZZ  ->  (
r  e.  Prime  ->  ( ( r  +  1 )  <_  z  ->  ( z  <_  r  ->  z  e/  Prime ) ) ) )
3433com23 86 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ZZ  ->  (
( r  +  1 )  <_  z  ->  ( r  e.  Prime  ->  ( z  <_  r  ->  z  e/  Prime ) ) ) )
3534a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  +  1 )  e.  ZZ  ->  (
z  e.  ZZ  ->  ( ( r  +  1 )  <_  z  ->  ( r  e.  Prime  ->  ( z  <_  r  ->  z  e/  Prime ) ) ) ) )
36353imp 1256 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( r  +  1 )  e.  ZZ  /\  z  e.  ZZ  /\  (
r  +  1 )  <_  z )  -> 
( r  e.  Prime  -> 
( z  <_  r  ->  z  e/  Prime )
) )
3720, 36sylbi 207 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ZZ>= `  (
r  +  1 ) )  ->  ( r  e.  Prime  ->  ( z  <_  r  ->  z  e/  Prime ) ) )
38373ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  < 
N )  ->  (
r  e.  Prime  ->  ( z  <_  r  ->  z  e/  Prime ) ) )
391, 38syl5com 31 . . . . . . . . . . . . . . 15  |-  ( r  e.  { q  e. 
Prime  |  q  <  N }  ->  ( (
z  e.  ( ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  < 
N )  ->  (
z  <_  r  ->  z  e/  Prime ) ) )
4039adantl 482 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  r  e.  { q  e.  Prime  |  q  <  N }
)  ->  ( (
z  e.  ( ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  < 
N )  ->  (
z  <_  r  ->  z  e/  Prime ) ) )
4140imp 445 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  (
ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) )  -> 
( z  <_  r  ->  z  e/  Prime )
)
4241adantl 482 . . . . . . . . . . . 12  |-  ( ( z  e.  Prime  /\  (
( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  (
ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) ) )  ->  ( z  <_ 
r  ->  z  e/  Prime ) )
4319, 42embantd 59 . . . . . . . . . . 11  |-  ( ( z  e.  Prime  /\  (
( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  (
ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) ) )  ->  ( ( z  e.  { q  e. 
Prime  |  q  <  N }  ->  z  <_  r )  ->  z  e/  Prime ) )
4443ex 450 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  (
ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) )  -> 
( ( z  e. 
{ q  e.  Prime  |  q  <  N }  ->  z  <_  r )  ->  z  e/  Prime )
) )
45 df-nel 2898 . . . . . . . . . . 11  |-  ( z  e/  Prime  <->  -.  z  e.  Prime )
46 ax-1 6 . . . . . . . . . . . 12  |-  ( z  e/  Prime  ->  ( ( z  e.  { q  e.  Prime  |  q  <  N }  ->  z  <_  r )  ->  z  e/  Prime ) )
4746a1d 25 . . . . . . . . . . 11  |-  ( z  e/  Prime  ->  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  (
ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) )  -> 
( ( z  e. 
{ q  e.  Prime  |  q  <  N }  ->  z  <_  r )  ->  z  e/  Prime )
) )
4845, 47sylbir 225 . . . . . . . . . 10  |-  ( -.  z  e.  Prime  ->  ( ( ( N  e.  ( ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  <  N } )  /\  ( z  e.  (
ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) )  -> 
( ( z  e. 
{ q  e.  Prime  |  q  <  N }  ->  z  <_  r )  ->  z  e/  Prime )
) )
4944, 48pm2.61i 176 . . . . . . . . 9  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  (
ZZ>= `  ( r  +  1 ) )  /\  N  e.  ZZ  /\  z  <  N ) )  -> 
( ( z  e. 
{ q  e.  Prime  |  q  <  N }  ->  z  <_  r )  ->  z  e/  Prime )
)
5049impancom 456 . . . . . . . 8  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  {
q  e.  Prime  |  q  <  N }  ->  z  <_  r ) )  ->  ( ( z  e.  ( ZZ>= `  (
r  +  1 ) )  /\  N  e.  ZZ  /\  z  < 
N )  ->  z  e/  Prime ) )
5113, 50syl5bi 232 . . . . . . 7  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  ( z  e.  {
q  e.  Prime  |  q  <  N }  ->  z  <_  r ) )  ->  ( z  e.  ( ( r  +  1 )..^ N )  ->  z  e/  Prime ) )
5251ex 450 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  r  e.  { q  e.  Prime  |  q  <  N }
)  ->  ( (
z  e.  { q  e.  Prime  |  q  <  N }  ->  z  <_  r )  ->  (
z  e.  ( ( r  +  1 )..^ N )  ->  z  e/  Prime ) ) )
5352ralimdv2 2961 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
3 )  /\  r  e.  { q  e.  Prime  |  q  <  N }
)  ->  ( A. z  e.  { q  e.  Prime  |  q  < 
N } z  <_ 
r  ->  A. z  e.  ( ( r  +  1 )..^ N ) z  e/  Prime )
)
5453imp 445 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  A. z  e.  { q  e.  Prime  |  q  <  N } z  <_ 
r )  ->  A. z  e.  ( ( r  +  1 )..^ N ) z  e/  Prime )
5512, 54jca 554 . . 3  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  A. z  e.  { q  e.  Prime  |  q  <  N } z  <_ 
r )  ->  (
r  <  N  /\  A. z  e.  ( ( r  +  1 )..^ N ) z  e/  Prime ) )
562, 8, 55rspcedvd 3317 . 2  |-  ( ( ( N  e.  (
ZZ>= `  3 )  /\  r  e.  { q  e.  Prime  |  q  < 
N } )  /\  A. z  e.  { q  e.  Prime  |  q  <  N } z  <_ 
r )  ->  E. p  e.  Prime  ( p  < 
N  /\  A. z  e.  ( ( p  + 
1 )..^ N ) z  e/  Prime )
)
57 eqid 2622 . . 3  |-  { q  e.  Prime  |  q  <  N }  =  {
q  e.  Prime  |  q  <  N }
5857prmgaplem3 15757 . 2  |-  ( N  e.  ( ZZ>= `  3
)  ->  E. r  e.  { q  e.  Prime  |  q  <  N } A. z  e.  { q  e.  Prime  |  q  <  N } z  <_ 
r )
5956, 58r19.29a 3078 1  |-  ( N  e.  ( ZZ>= `  3
)  ->  E. p  e.  Prime  ( p  < 
N  /\  A. z  e.  ( ( p  + 
1 )..^ N ) z  e/  Prime )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    e/ wnel 2897   A.wral 2912   E.wrex 2913   {crab 2916   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   3c3 11071   ZZcz 11377   ZZ>=cuz 11687  ..^cfzo 12465   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  prmgaplem7  15761
  Copyright terms: Public domain W3C validator